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H I G H L I G H T S

• A method non-dependent of load-
control devices or dynamic pricing
systems.

• May allow individual consumption
profiles identification without energy
meters.

• Minimizes simultaneously the cost of
energy production and users’ dis-
comfort.

• 8.6% of fuel savings was achieved re-
quiring the action of only 51% of the
users.

• Indirect gains in maintenance of the
generators were also achieved.
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A B S T R A C T

Nowadays a diversity of demand-side energy management methods have been investigated and experimented, how-
ever, the low acceptance and participation of the users and the extra costs for the monitoring and control devices
installation are still listed by the literature as the main barriers to be overcome. In many cases, activities can be
performed in several ways, but once planned, the replanning or cancellation can become impracticable. In Antarctic
Research Stations and isolated communities, the planning of activities is even more critical due climatic time windows
and facility availability. Considering these aspects, this work proposes and analyses a demand-side management
method based on the cooperative combination of activity plans. The method does not depend on the installation of
load-control devices neither knowledge of the user about electricity or tariffs. Based on options of plans informed by the
users, the proposed multi-objective optimization algorithm search for the set of plans that both minimizes the cost of
energy production and the discomfort of the whole community. Simulations performed for a wind-solar-diesel mi-
crogrid with 100 users in scenarios of lack and excess of renewable resource indicate that the proposed method can
contribute to the adjustment of the aggregate demand profile of users served by isolated microgrids. In the simulations,
the problem of overgeneration by the renewable sources was solved and 8.6% of fuel savings was achieved by the
intervention in only 51% of the users. Improvements in the load factor of the generators and in their total operation
time were also observed. As consequence, a reduction in the maintenance costs of the generators is also expected.
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1. Introduction

In energy markets, similarly to other markets, the final costs of
production and distribution may have different values depending on the
demand profile. In isolated communities served by microgrids the un-
coordinated demand together with renewables resource intermittence
can produce even more impact, in terms of energy cost [1,2], main-
tenance and grid reliability [3]. In general, demand curves containing
uncoordinated peaks and valleys raise the final cost of energy both by
the need to expand the generation and distribution infrastructure and
by forcing the equipment to operate outside its optimal efficiency
range.

Demand-Side Energy Management (DSM) is the term used to de-
scribe different strategies used to modify the electrical demand of
consumers, aiming to reduce the mismatch between supply and de-
mand. DSM methods that encourage the migration of loads to off-peak
hours, such as real-time and day-ahead dynamic pricing, have been
deep investigated [4,5] and experimented [6,7] in recent years. How-
ever, these traditional DSM methods require frequent monitoring of
energy price by the users or the installation of intelligent load-control
devices [8,9].

This work proposes a multi-objective day-ahead DSM method that
simultaneously minimizes the cost of energy production and the dis-
comfort of users by the cooperative combination of plans. The proposed
method does not depend on the installation of load-control devices and
does not require the monitoring of energy price by the user, reducing
the DSM implementation costs and making human participation less
stressful. The users only need to inform up to three options of how they
prefer to perform their daily activities. One plan is considered the main
and the others alternative plans. Each combination of plans produces an
aggregate demand curve of the community. The proposed method
searches for the combination that minimizes the daily energy cost with
minimal selection of alternative plans.

1.1. Research contributions

This research contributes with a multi-objective cooperative method
able to manage the electric demand without the need of smart meters
installation, load control devices and energy price monitoring. The
proposed method was initially designed for application in isolated re-
search stations considering investigations made by the authors at the
Brazilian Antarctic Station [2,10]. In this sense, the proposed method is
an option for demand-side management in remote communities, Ant-
arctic Stations and Advanced Space Stations.

The competitive differentials of the proposed method in relation to
traditional DSM systems are:

• Does not depend on the installation of monitoring and load-control
devices or on dynamic pricing systems;

• Ability to consider and manage the consumption of each user over
all the grid area, along particular and public spaces;

• Does not require from users any knowledge of electrical equipment
characteristics or about energy cost to participate; and

• May allow the identification of individual consumption profiles
without measuring devices.

In addition, the research contributes with a formulation and ana-
lysis of the Variable Neighborhood Search metaheuristic, for the solu-
tion of the day-ahead DSM problem, under the cooperative approach,
using parallel computation.

1.2. Paper organization

For a better understanding of the work, the main fundamental
concepts related to the theme and to the proposed DSM model are

organized in the Section 1.3 Literature review. The Section 1.3.1
highlights the main DSM techniques and methods investigated by the
literature. Section 1.3.2 sums up the concepts related to metaheuristics
and multi-objective optimization. In Section 1.3.3 are explored barriers
and potentials for applying DSM in real scenarios.

After the introduction, Section 2, Proposed DSM method, details the
methodology and formulation related to the proposed management
method and to the optimization algorithm.

Section 3, Input data modeling, presents the definition and mod-
eling of the electrical demand, renewable resources and the microgrid
topology adopted for the simulations.

Section 4, Definition of cases to test the DSM, presents the cases
defined to test the proposed DSM and the performance indicators se-
lected for comparison in the analyses.

The Sections 5–7 respectively present the results, the discussion and
the conclusions. At the end of the paper a complementary analysis of
the proposed optimization versus a purely decision making by the en-
ergy system operator is presented in Appendix A, Purely decision-
making vs optimization.

1.3. Literature review

In theory, the optimal management of modern energy systems
composed of multiple sources such as thermoelectric, wind and solar
generation, with or without energy storage systems, is fully possible
with the adoption of the Smart Grid concept. In practice, the integration
of monitoring and control devices, communication and data processing
systems aiming the optimal management and operation of the network
requires preliminary investigation, development and experimentation
of techniques, methods and technologies [9,11].

The following Subsections organize relevant aspects related to the
DSM systems deployment. Features like techniques of load manage-
ment, type of users’ interaction and time scale of the management are
investigated once these are the main aspects listed by the literature to
characterize the DSM systems. Concepts of multi-objective optimization
are also reviewed and the use of approximate methods showed up as an
alternative to deal with the complexity of cooperative users approaches.
In addition, real cases of DSM implementations are investigated, and
the main barriers highlighted by the literature are addressed.

1.3.1. Overview of DSM techniques and methods
Among the main demand management techniques investigated by

the literature are: load shifting; peak clipping; valley filling; load
building; and flexible load [4,12].

Load shifting, considered the most effective load management
technique, shifts loads from peak times to off-peak time and can be
done manually or automatically. Peak clipping and valley filling are
techniques of direct control of load in which loads are reduced at peak
time or inserted in off-peak hours. Load building and flexible loads are
linked to the infrastructure provided within the Smart Grids concept.
Load building increases the share of loads and energy storage systems to
improve grid responsiveness, going beyond the valley fill technique.
Flexible loads are loads that can and are willing to be controlled in
exchange for incentives [4,12].

Besides these techniques, the DSM systems also differ according to
the optimization implementation methods. The methods can be differ-
entiated by: type of user interaction (individual or cooperative); the
optimization problem approach (deterministic or stochastic); and time
scale (day-ahead or real time) [12].

Type of user interaction: DSM systems can be designed to optimize
the use of electrical resources by individual users or a cooperative
consumer community. Optimization methods for single residential
users are set to individually and locally control the loads. However, this
approach may have some undesirable effects [12], since user decisions
are not coordinated. In the case of DSM methods for minimizing user
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payments, for example, all consumers can transfer their loads to periods
of day when electricity prices are low, potentially causing high peaks in
demand during these low-cost periods and also interruptions of service.
Cooperative models solve the problem of demand management in a
coordinated way and consider the achievements of the collective action
of users in the system. Cooperative models are more complex to study
and solve, since they need to consider the possibilities and constraints
of all users at the same time. Despite the greater complexity, co-
operative modeling is the most promising to be implemented in real
scenarios [4,12].

Approach of the optimization problem: Another feature is the use of
deterministic or stochastic approaches to design the demand manage-
ment solver. In DSM systems, parameters such as renewable energy
generation and energy prices for future periods are estimated by fore-
casting methods. In the deterministic approach it is considered only one
scenario for the simulations, while the stochastic approach evaluates
multiple possible scenarios, taking into account the expected random-
ness of the forecast, in order to consider the uncertainty in the decision-
making process [12].

Time scale: DSM systems can be deployed to manage customer as-
sets in day-ahead or in real time. At day-ahead time scale, the opera-
tional plan for the electrical resources of the users need to be defined
for the next 24-hour period. To do so, the DSM system requires forecasts
and estimates of some system parameters, such as power generation
from local sources and device usage preferences for the next day. On the
other hand, in real-time management, the actions are made based on
real-time data from the users and from the operator. As a consequence,
demand side management systems in real time scale behave similarly to
demand response systems [12].

Fig. 1 organizes side by side the main techniques and methods used
for DSM systems characterization.

1.3.2. Concepts of metaheuristics and multi-objective optimization
The management of modern energy systems is made through opti-

mization algorithms based on forecasted and power system information
[4,12]. The forecast of renewable resources [13] and energy con-
sumption [14], hours or days ahead, allows that possible imbalances
between supply and demand to be identified in advance. With the
forecasted information and the power system parameters and con-
straints, the optimization problem can be modeled adopting different
techniques and methods.

The complexity of the optimization problem and consequently the
time required to solve it can be higher or lower depending on the
number of users and the methods used by the management system. In
DSM systems based on cooperative users, for example, the number of
possible combinations increases exponentially with the increase of
users. In many cases finding the optimal solution may become im-
practical given the computational requirement and time limitations. In

this sense, the use of approximation optimization algorithms and par-
allel computing [15] have been increasingly investigated and are
proving to be effective in solving energy management problems [16].

The approximation methods are based on simplified procedures in
order to provide a solution not necessarily optimal, but satisfactory in
an acceptable time. In the last decades, several methods of approx-
imation have been proposed with emphasis for the heuristics [16,17].

Heuristic methods can be classified into trajectory-based and po-
pulation-based. Trajectory-based metaheuristics uses a main solution
during the search process and gives a unique final solution. Examples of
trajectory-based metaheuristics are: Greed Randomized Adaptive
Search Procedures (GRASP), Hill Climbling (HC), Iterated Local Search
(ILS), Simulated Annealing (SA), Tabu Search (TS) and Variable
Neighborhood Search (VNS). In contrast, population-based metaheur-
istics uses sets of solutions (population) that evolve with each iteration
for an optimized final set. Examples of population-based metaheuristics
are: Artificial Bee Colony Optimization (ABCO), Ant Colony
Optimization (ACO), Differential Evolution (DE), Evolutionary
Algorithms (EA), Estimation of Distribution Algorithm (EDA), Genetic
Algorithms (GA), Memetic Algorithms (MA), Path Relinking (PK),
Particle Swarm Optimization (PSO), and Scatter Search (SS) [16].

Heuristic methods can be understood as strategies that guide a
search process. One of the metaheuristics that has high degree of gen-
eralization and freedom for application in several optimization pro-
blems is the VNS [15]. The VNS metaheuristic was proposed by Mla-
denović & Hansen [18] and differs from other methods by the
application of local searches in different neighborhoods within the so-
lutions space [19]. Each iteration consists of three phases: shaking,
local search and update of the best solution. If the local search stops
presenting improvements, the algorithm explores increasingly distant
neighborhoods of the current incumbent solution and jumps from this
solution to a new one if and only if improvement has been made [19].

In many cases, it is desirable to simultaneously optimize multiple
objectives such as cost, comfort and environmental impact. In these
cases, it is necessary to choose a method capable of adequately con-
sidering the multiple objectives in each iteration. In multi-objective
approaches, two methods stand out: aggregate weights functions and
Pareto-dominance [16].

Aggregate weights functions combine all the objectives in the same
mathematical function, where the relative importance of each objective
is given by weights. Despite the simplicity of incorporating several
objectives into the same function, the definition of the weights relative
to each objective is complex and can compromise the results.

Pareto-based optimization methods solve this problem through the
Pareto-dominance concept, which considers that a solution S1 dom-
inates another solution S2 when S1 is better than S2 in at least objective
and is not worse in the other objectives. If none of the solutions dom-
inate one another, they are said to be indifferent. The set of non-

Fig. 1. Main DSM techniques and methods listed by the literature for DSM characterization.
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dominated solutions constitutes the optimal set of Pareto or Pareto
frontier, from where it is possible to choose the solution based on
thresholds and priority criteria between the objectives.

1.3.3. DSM in real scenarios
Dynamic pricing is one of the emerging areas of research in the

retail electricity sector. It is a demand side management technique that
stimulates peak load reduction and valley filling by charging different
prices at different times according to demand [20]. According to Dutta
and Mitra [20], the peak load reduction of around 30% is registered in
pilot projects of dynamic prices. The experiments registered a 4% re-
duction to an 8% increase in the bill values depending on the pricing
scheme and the attitude of customers [20].

Another indicator used in the study of DSM systems is demand
flexibility, which measures the customers' ability to modify their energy
consumption [21]. Ayón et al. [21] investigated the flexibility of ag-
gregate demands of buildings with different characteristics, such as
shopping malls, offices, hotels and residences, using data from the
Spanish electricity market. The flexibility in relation to aggregate de-
mand observed was between 10% and 30% in winter and between 12%
and 40% in summer, depending on the type of buildings.

Regarding the difficulties for the implementation and success of
demand response systems, Good et al. [9] identifies and classifies the
barriers as fundamental or secondary. The fundamental barriers are
defined as economic, social or technological, while secondary barriers
are related to political regulatory aspects, market design, physical is-
sues (electric grid) or the general definition of demand response.

Le Ray et al. [7] presents the evaluation of the demand response
system performed within the EcoGrid EU Experiment [6]. In the ex-
periment, 1900 homes were equipped with smart meters and other
automation devices in order to adapt consumption to electricity prices
in real time every five minutes. The results showed that the houses
could be considered responsible for the price in some days of testing,
while in some others the results were inconclusive [7]. During the ex-
periment, the group of customers responsible for the manual manage-
ment of their demands (without automatic load actuators) showed low
reaction to the variable prices. The project members involved in the
field test highlighted as one of the complicating factors the high fre-
quency of price changes. Up to half of the project, only 14% of manual
response customers visited the site on a regular basis to verify the rates
and by the end of the project the participation percentage did not ex-
ceed 33% [22]. On the other hand, groups of customers with automatic
load-actuation showed good results. Although the installation of smart
devices can demonstrate better results by not requiring customers to
constantly monitor tariffs and frequently replan their activities, energy
companies understood that the potential financial gain from partici-
pating in the project was small compared to the effort to upgrade the
systems. In addition, the use of smart devices to control loads would
introduce a potential risk of damaged goods if the local security lockout
failed [22].

In extreme environments like Antarctica concepts of energy con-
servation and demand management have also been explored in con-
junction with the inclusion of renewable energy sources [1,2]. In such
environments, the dependency of a single energy source or the un-
regulated use of energy is even more critical. The additional cost of
logistics can increase the fuel value by more than seven times [1] and
its scarcity can put at risk the human survival. Antarctic stations of
countries such as Australia, Belgium, New Zealand and United States
are examples of buildings in extreme environments, working with re-
newable sources integrated to a power plant based on diesel oil [2,23].

In general, there are no individual billing of energy in Antarctica
since the cost of energy is covered by the Antarctic Programs or re-
search grants. Most of the activities in Antarctic Stations need to be
planned due to researches, climatic time windows and facility re-
servation. In many cases, it is stressful or impracticable to replan or
interrupt activities during the time of execution. In this sense, DSM

systems based on dynamic pricing are not suitable for Antarctic build-
ings.

Among all the Stations, the Belgian Station, named Princess
Elisabeth Antarctica (PEA), stands out. PEA is differentiated by its
energy management algorithm that allows a 1:10 rate between pro-
duction and electrical loads [24]. For this, the station has a complex
Smart Grid capable of simultaneously supervising more than 2000
points of production and energy consumption. The PEA project
adopted the concept that the demand of energy is subject to the
conditions of generation and not that the generation must attend in-
discriminately to the demand [24]. In this concept, the following le-
vels of priority are analyzed to perform a hierarchical control of loads
[23,24]: Level 1-Human security, water production and ventilation;
Level 2-General Station systems such as temperature and humidity
control; Level 3-Storage and maintenance of scientific records; Level
4-Kitchen, restrooms and the like; Level 5-Non-essential equipment
like laptops and DVD players.

Whether in cities or extreme environments, energy management
methods have been widely investigated. In common, the methods
follow the concept of Smart Grid and present as main difficulties en-
couraging human participation and reducing the need of devices in-
stallation.

In this context, the exploration of management methods that assist
users in planning their tasks without requiring advanced knowledge of
energy, that do not rely on the installation of extra devices and that deal
with the DSM problem in a cooperative way is justified.

2. Proposed DSM method

In this paper, a multi-objective DSM system was designed using a
humanized approach. The humanized approach refers to the improve-
ment of the DSM convenience to the user through the interaction with
the users in the level of activities, one layer above the loads. Based on
the activity plans informed by the users, the loads, and consequently
the electrical demand curves, can be estimated and then processed by a
DSM system.

Was proposed the use of up three options plans for each user. This
number is realistic and is sufficient to promote a large number of
combinations. One of the plans is considered as the main and the others
are defined as alternative plans.

Considering the options of demand curves of each user, a multi-
objective optimization algorithm searches for a combination of plans
that minimizes simultaneously the cost of energy production and the
discomfort index. The discomfort index is given by the number of users
who need to execute one of their alternative plans.

The algorithm promotes the load shifting over time by switching
between the main plans and the alternative plans. The method exploits
the potential for complementarity in the electrical demand curves that a
set of users may naturally present.

The problem is solved within the cooperative users approach for
execution in the next day during the morning and the afternoon, from 6
a.m. to 6p.m. Night and dawn were considered as people rest time. The
steps that are executed by the proposed DSM (data collection, optimi-
zation and agreement with users) and the proposed methodology to the
data flow are detailed in Sections 2.1 and 2.2.

For the multi-objective optimization, a VNS metaheuristic was im-
plemented together with parallel computing techniques and Pareto-
dominance concept. Parallel VNS is a improved VNS algorithm [25]
with a high degree of generality and allows the resolution of large in-
stances of combinatorial problems [15]. The choice of VNS also aimed
at evaluating the metaheuristic applied to demand side management
problems. Section 2.3 details the methodology related to the optimi-
zation algorithm.

To evaluate the proposed method in cases of lack or excess of re-
newable energy, it was defined a scenario of 100 users attended by a
wind-solar-diesel microgrid. The microgrid, the renewable resource and

T.M. de Christo, et al. Applied Energy 240 (2019) 453–472

456



the demand of the users are modeled following the methodology pre-
sented in Section 3.

For the evaluation of the proposed DSM, two cases were defined.
Case 1 aimed at evaluating the behavior of DSM without the presence of
renewables. Case 2 was defined to evaluate the DSM in the presence of
excess renewables. Section 4 describes the cases and all the perfor-
mance parameters chosen to be analysed in the simulations.

2.1. The DSM workflow

The cycle of execution of the proposed DSM is daily and is divided
into three parts: data collection; optimization problem resolution; and
agreement of plans with users. Fig. 2 presents the workflow of the
proposed DSM. The data collection phase is represented by the yellow
arrows. The output of the system is represented by the green arrows.
The optimization is executed at the Energy Management System (EMS)
server.

Initially, to feed the optimization problem, data from the power
plant, renewable resources forecast, and electric demand information
are required. The data of the power plant involves the capacity of
generation of the generators and renewable sources, efficiency of the
systems and fuel consumption curve parameters. The data of renewable
resources consists in day-ahead hourly forecasts. The electric demand is
estimated based on the options of activity plans informed by the users
for the following day.

The plans are informed by the users via smart phones to a demand
estimator application provided by the Energy System Operator (ESO)
and then only the demand curves are sent to the EMS server.

After data collection, the optimization algorithm is able to be exe-
cuted. Once the solution is determined, the users are then informed
about which plan each one should choose to minimize the overall cost
of energy production. After the agreement with the users, the EMS
sends to power plant controllers the expected demand curve.

2.2. DSM formulation

During the DSM initialization, the users are invited to present up to
three possibilities of performing their next day activities (Plan 1, 2 or
3). Considering the informed plans, the possible demand curves of each
user are estimated and in sequence the optimization algorithm seeks a
coordinated action of the users that minimize the cost of energy pro-
duction with the minimum number of users managed. In the end, each
user is informed which plan need to be followed so that the whole
system is improved.

For this, the activity plan of a user is defined as a vector of z hours,
containing in each hour the set of activities planned by the user. Each
user presents one main plan and two alternate ones, totaling three
plans. Plan 1 is considered as the most convenient plan to the user. For
elaboration of the alternate plans, the user is invited to migrate activ-
ities between morning and afternoon or within the same period. A
fundamental premise is that the users only presents plans that are
feasible.

The premise that the user presents only feasible plans allows im-
proving the optimization performance and ensuring the feasibility of
the solutions. The adoption of this premise is interesting since the

verification of incompatibility of activities in time and space is per-
formed naturally by each user considering both individual and collec-
tive constraints. This approach also ensures that the final solution found
by the optimization will be realistic to the user.

The proposed method explores the understanding that the in-
dividual, and consequently its consumption, move spatially through the
region served by the energy network. In this way, the plans describe the
activities carried out by the users, regardless of the place of execution.
So, the demand estimator system accounts the consumption all over the
grid, not only inside a house or a specific building.

In the proposed approach, it is considered that every hour a person
can perform a set of activities, in one or more places. Whatever the
place, each activity may be linked to the use of one or more equipment
(loads). So, the electrical consumption related to a specific activity like
“do task × at room y”, may be composed by the electrical consumption
promoted by one or more loads. From this method it is possible to
perform the accounting of the energy consumption caused by group of
activities and so estimate the demand curve related to each one of the
activity plans. This information is then stored in a matrix named Matrix
of Demand Curves (MDC).

The aggregate demand curve is given by the sum of demand curves
of all users. Therefore, the aggregate demand curve will have its format
changed according to the plans executed by each user. Each combina-
tion of plans produces an aggregate demand curve.

The number of possible combinations is given by the number of plans
raised to the number of users. Thus, considering n users with three plans
each, there will be up to 3100 possible aggregate demand curves. Each of
these aggregate demand curves is addressed by a vector of a possible
combination i.e. =S Plan id Plan id Plan id Plan id{ _ , _ , _ , ..., _ }i

i i i
n
i

1 2 3 , where
Plan id_ n

i indicates the plan suggested by the solution number i for the
user number n. By way of illustration, the first possible combination, the
combination where all users execute their respective plans 1, main plans,
is expressed by =S {1, 1, 1, ...,1}1 .

The renewable resources data is defined as a vector of z hours,
containing the forecasted renewable energy for the day-ahead. The
power plant parameters are constants and variables related to equip-
ment capacities, efficiencies and consumption curves, limits and cost of
operation, used to construct the power plant model.

Fig. 3 illustrates the DSM operating cycle, beginning and ending in
the user. In the Fig. 3 it is possible to visualize the vectors of the activity
plans informed by the users, the concepts of activity groups per hour
and estimation of the demand curves. Based on the demand curves,
renewable forecast and power plant parameters, the optimization al-
gorithm solves the problem and returns the solution to the users. The
solution is a vector containing the identifier of the plan that each user
needs to follow to promote the intended objectives.

Considering the solution found by the optimization algorithm, the
aggregate demand curve expected for the next day is sent to the power
plant operator. With this information the operator can manage the
generators in a more reliable and efficient way, as simulated inside the
optimization. Some or even all the generators can be turned off during
specific hours of the day, which improves the gensets load factor and
reduces the generators operation hours. The planning of maintenances
and the alternation of generators are also aspects that can be improved
based on the knowledge of the demand curve expected for the next day.

Fig. 2. Workflow of the proposed DSM.
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2.3. Optimization algorithm

As introduced in the Section 2.2, each candidate solution represents
a coordinated action of the users. The objective of the optimization is to
find the coordinated action that promotes the minimum cost of energy
production with the minimum discomfort of the users. In this paper, the
proposed DSM was applied to a wind-solar-diesel microgrid and the fuel
consumption was considered as the cost to be minimized. The problem
was mathematically formulated as follows.

Each candidate solution Si is identified by the index i and belongs to
the set =I S S S{ , , , }k1 2 n , =I k| | n. Where k and +n . The constants k
and n are respectively the number of plans and the number of users
considered in the problem. A candidate solution Si is a vector con-
taining n plan identifiers, one for each user. In this way , =S n| |i . Where
Plan id_ stores a plan identifier. The plan suggested by the solution Si for
the user number u is represented by Plan id_ u

i . The set of plan identifiers
is represented by = =P k P k{1, 2, , }, | | , +P . Thus, Plan id P_ u

i .
Eqs. (1)–(6) refer to the first objective which is the fuel consumption

minimization. (1) denotes the minimization of the fuel consumption
function (2) inside the set I , the space of solutions. In (2), the expres-
sion g X( )h S, i refers to the fuel necessary for the microgrid operation
under a relative demand Xh S, i caused by the execution of Si at time h.

The function g is defined considering parameters of the microgrid

and vary depending on the power plant topology and its operation
modes. For the microgrid investigated in this paper, the function g is a
nonlinear discontinuous function. The function g and all considered
parameters are detailed in the Section 3.2.

The value of the relative demand Xh S, i is calculated as in (3), where
Adh S, i represents the aggregate demand of all users in the time h con-
sidering the execution of the solution number i and Reh represents the
renewable energy at the same h. The calculation of Adh S, i is made
through (4) accessing the users’ demands which are stored in the Matrix
of Demand Curves, presented in Section 2.2, Fig. 3. This matrix was
implemented in the algorithm as a tridimensional matrix that stores the
demand by user, plan and hour. The expression MDCu h S, , iu represents
the demand that will be caused by the user u, at the hour h, if the plan
proposed by Si for the user u is executed. The expression Siu is
equivalent to Plan id_ u

i . The value of Reh is calculated using Eq. (5),
where Wh and Sh are respectively the average wind and solar power
expected for the hour h.

The optimization of the first objective is subjected to (6), where
Gpower

nominal is the nominal power of the generators and NG is the number of
generators considered in the problem.

=f minf S( )obj S I fuel i
i1 (1)

Fig. 3. Concept of the data structure and flow for the proposed DSM, beginning and ending in the user.
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Eqs. (7)–(9) refer to the second objective, which computes the dis-
comfort index. (7) denotes the minimization of the discomfort index
function (8) inside the set I , the space of solutions. The discomfort
index indicates how many users will need to follow one of their alter-
native plans, i.e. the summation of the individual discomfort, d S( )iu , of
all the users. The individual discomfort (9) of a user is 0 if Si maintain
the main plan, plan 1, for the user u, otherwise it is 1.

=f minf S( )obj S I disc i
i2 (7)

=
=

f S d S( ) ( )disc i
u

n

i
1

u
(8)

=
=

d S
S
S( )

0, 1
1, 1i

i

i
u

u

u (9)

The management of user’s activity plans in a cooperative way is
characterized as a multi-objective combinatorial optimization problem
with a search space that grows exponentially with the number of users,

=I k| | n, and the time to compute each instance grows linearly.
To deal with the problem complexity, it was implemented an

Independent Variable Neighborhood Search (IVNS) optimization algorithm
[25], which allows the execution of multiple independent VNS structures
through parallel computing. The IVNS strategy allows improving the quality
of the answers without increasing the processing time, since it allows ex-
ploring a greater portion of the space of solutions in a same time interval
through the parallel execution of VNS structures in multiple processors.

The VNS metaheuristic starts from an initial solution, and proceed
the optimization through cycles of shaking, local searches, update of the
best solution and exploration of different regions (neighborhoods) of
the space of solutions [19,25]. The VNS repeats these steps until the
stop criterion is reached.

In the shaking phase a solution s' is randomly selected in a given
neighborhood k through a function shake s k( , ), where s is the best-known
solution and k is the factor related to both the neighborhood and the in-
tensity of the shaking. After the shaking procedure, the local search is
carried out from the solution s'. Finally, the best solution obtained in local
search, s'', is compared with the best-known solution, s. If s'' is better than s,
the solution s is updated, and the algorithm continues with =k 1. If no
improvement occurs, k is incremented and a new shaking phase is per-
formed using the new k, thus exploring more distant neighborhoods.

In this work the IVNS algorithm was implemented with four parallel
and independent VNS structures. The number of parallel structures has

Fig. 4. IVNS algorithm flowchart implemented for the proposed DSM.
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been defined for execution on a quad-core processor. Fig. 4 shows the
flowchart of the implemented IVNS algorithm. Each VNS test a total of
four solutions during its local search procedure. One of the tested so-
lutions is considered as a main solution, s', and is obtained by applying
a shaking to the best-known solution, s. The other three tested solutions
are generated from the application of transformations in the main so-
lution, s', to promote a local search in the neighborhood. In Fig. 4 the
local search boxes are highlighted and indicate the transformation
functions used in each VNS. The functions fa and fb are common to all
VNS structures, whereas the functions, f1, f2, f3 and f4 are respectively
particular to the VNS structures 1, 2, 3 and 4. Table 1 illustrates the
transformation functions applied to a hypothetical s' vector of plans.

The solutions tested in every local search cycle can be created by ap-
plying transformations in at least 1% or up to 100% of s'. If it is decided to
change the plan of only one user (1% of s') in each cycle, only two trans-
formations will be feasible, fa and fb. Changing the plan of only one user by
cycle produces a candidate solution too similar to the reference curve and
also limits the number of testable solutions to only three per cycle. On the
other hand, changing the plan of more users simultaneously make it pos-
sible to test demand curves a little more different and using more trans-
formations make it possible to test more solutions every cycle.

For the comparison and update of the best solutions it was used the
Pareto-dominance method considering the fuel minimization as the first
objective.

Each VNS explores the solution space seeking better solutions until the
stop criterion is met, which was established as the execution of 100,000
iterations for each VNS. In the tests, this number of cycles proved to be more
than sufficient to ensure convergence in the four VNS, spending approxi-
mately 10 s for the simultaneous execution of the four VNS structures. The
algorithm was implemented in C++ language, using the Microsoft Visual
Studio Integrated Development Environment (IDE). The tests were run on a
quad-core processor, operating at 3 GHz.

3. Input data modeling

The data required for simulation of the proposed DSM involve electric
demand curves, power plant parameters and renewable resources informa-
tion. In this work, these data were defined considering the randomness of the
electric demand, the typical performance of the equipment of generation and
typical intermittence of the renewable resource. The definition of the electric
demand curves is detailed in Section 3.1. The definition of the microgrid and
renewable resources are detailed in Sections 3.2 and 3.3.

3.1. Electricity demand curves

As described in Section 2, in the proposed method the users’ demand
curves are estimated from the activity plans registered by users for the
morning and afternoon periods of the next day (6 a.m. to 6p.m.), i.e.,
activities performed during working hours of the day.

In this work, a demand emulator with the capacity to reproduce
electric consumption curves of 100 users was developed using Microsoft
Excel spreadsheet software. Users’ consumption curves were generated
by a probability distribution function following a reference aggregate
demand curve. As reference, it was adopted a profile similar to the one
observed at the Brazilian Antarctic Station, in the summer term, during
week days [2]. Fig. 5 shows the reference aggregate demand curve side
by side with the curve obtained by the emulator. The aggregate demand
curve was obtained by the summation of all users’ demand curves.

In practice, the demand curves vary depending on socio-demo-
graphic factors [26], user behavior, types of loads, seasons and day of
the week [27,28]. To reproduce the randomness of the electrical con-
sumption of the users every hour, a normal distribution function was
used. The mean and standard deviation were settled proportional to the
reference demand of each hour. The mean value used for each hour was
the per capita direct consumption of the hour. The standard deviation
value was settled as the half of the mean value. The per capita direct
consumption of the hour is the average value consumed by the users
every hour, discounting the portion of indirect consumption.

In this work, the share of indirect consumption was considered 10%.
This part is intended to consider the energy consumed by equipment and
other systems that have an operating regime indirectly caused by the users
or even in the absence of users in the places. Examples are the consumption
of standby equipment and refrigerators. This portion does not include the
consumption of electricity for lighting, heating and cooling, which are
treated in this work as linked to the activities. Thus, a value equivalent to
10% of total demand was considered fixed and does not change with
changes in users' plans. This consideration reduces the flexibility of simu-
lated demand but is essential to represent indirect consumption. In practice,
this fixed share of demand should be estimated case-by-case.

Considering the values of mean and standard deviation of each hour and
a fixed portion of 10%, the electric consumption of each one of the users
was generated through the normal distribution function. This method al-
lows reproducing, for every hour, both the randomness of the individual
demand and the value of the aggregate demand, as can be seen in Figs. 6
and 7. Fig. 6 shows the hourly demands of the 100 users in a color scale.
Fig. 7 presents the hourly minimum, maximum and averages values of
users’ demands.

The 100 demand curves created by the emulator are defined as users’
Plan 1, Plans 2 and 3 and are created from Plan 1 by shifting activities. In
Plan 2, sets of activities are shifted between the morning and afternoon
periods. In Plan 3, the sets of activities are shifted within the same period.
To illustrate the real situation that not all users will be able to change their
planning and the situation in which some users have greater or less flex-
ibility than others, exchanges are made by a random function. Figs. 8 and 9
show the quantity of hours replanned by each user in Plans 2 and 3 taking
Plan 1 as a reference. Figs. 10 and 11 show the histogram of the number of
hours replanned per user for Plans 2 and 3. In the histograms it is possible
view that most users had their activities rescheduled 6 h or less.

3.2. Microgrid model

The design of a hybrid energy generation system involves specific
studies of the loads to be fed, the available on-site renewable resource,
available space, and installation, operation and maintenance costs
[2,11]. However, these studies go beyond the scope of this article. In
this work, the micro-grid simulated, was defined considering aspects as
multiple generators, multiple renewable sources and energy storage
systems for stabilization and operation even with the generators swit-
ched off. The microgrid was designed with the purpose of meeting the
demand profile presented in Section 3.1 and to illustrate cases of op-
eration with and without excess of renewables.

Thus, it was proposed an isolated hybrid microgrid composed of two
diesel-powered generators of 100 kW each, a solar plant of 45 kWp and
a wind plant of 45 kWp combined with an energy and stabilization
storage system of 100 kWp and 100 kWh. Fig. 12 shows the topology of
the microgrid set to simulate the DSM system.

Table 1
IVNS local search transformations.

Current s' Transformation functions applied to s'

=s' =f s( ')a =f s( ')b =f s( ')1 =f s( ')2 =f s( ')3 =f s( ')4
{1, 2, 3. ..} {2, 3, 1. ..} {3, 1, 2. ..} Random{ . ..} {1, 3, 2. ..} {2, 3, 2. ..} {3, 3, 2. ..}
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In power systems powered by combustion engines, the amount of fuel
needed to generate 1 kWh varies according to the generator load factor.
This is due to the portion of energy consumed by the generator for the
operation of its regulation and ventilation subsystems, as well as the var-
iation of the thermal machine performance with the load factor. Fig. 13
presents the global and specific consumption curves of a 100 kW (125 kVA),
turbocharged, 6-cylinder, diesel-powered generator operating at 1800 RPM
in the range of 25% to 100% of its nominal power, tested in accordance
with ISO-3046. The average load factor can be understood as the ratio
between the average demand and the nominal power of the generator.

From the graph shown in Fig. 13, it is important to observe that
lowest values of specific consumption are reached around 75% of load
and that the operation below 50% of load increases considerably the
specific consumption. Moreover, the technical recommendation to en-
sure the durability and efficiency of the generator is to avoid operating
with generators below 30% load for long periods [29].

For the safe and efficient operation of the microgrid it is necessary

to define start and shutdown points for generators and inverters. The
generator shutdown point by low load factor was set at 30% and the
power reserve of the generators was set at 20%. Thus, Generator 1 will
operate alone on average hourly demand conditions from 30 kW to
80 kW. In an average hourly demand situation below 30 kW, the gen-
erator is switched off to prevent premature wear of components. Thus,
with average hourly demand below 30 kW, the microgrid starts to op-
erate only with the energy of the batteries, which will be recharged
when the generators are already operating or when the renewable re-
source is more than sufficient to meet all the users’ demand. In a si-
tuation with an average hourly demand greater than 80 kW, Generator
2 is turned on to guarantee the fulfillment of demand peaks, increase
the stability of the microgrid and preserve Generator 1. Thus, above
80 kW, the two generators operate in parallel.

In case of excess of renewable generation and impossibility to store
the surplus energy in batteries, the generators are disconnected and the
frequency of the system is adjusted in order to limit the injection of

Fig. 5. Aggregated electric demand curves. Defined reference curve and summation of the emulated curves of the 100 users.

Fig. 6. Electric demand per hour of each of the 100 users.
Fig. 7. Average, minimum and maximum values of users demands by hour.
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power by renewable sources and guarantee the stability of the system
[30]. In this condition the generators can be switched off for fuel
economy and equipment protection. The inverters of the batteries will
provide the frequency reference of the electric grid. During this op-
eration mode, part of the renewable resource that could be generated is
limited and is not used by the grid.

Considering the defined microgrid and the described mode of operation,
(10) presents the function g. The expression g X( )h S, i returns how many
liters of fuel will be consumed by the microgrid to deal with a relative
average demand Xh S, i for one hour. The value of Xh S, i is calculated using (3)
and all its subfunctions as detailed in the Section 2.3. The renewable sources
over-generation is considered ing by the interval X 0h S, i . In (10) the terms
m, a, b and c are the coefficients of the polynomial expressions that re-
present the fuel consumption curves. Gpower

low represents the generator shut-
down point by low load factor, Gpower

nominal represents the generator nominal
power and Gpower

res the reserved power. The values considered in the problem
were: =m 0.328; =a E630 6; =b 0.21; =c 2.94; =G 30power

low ;

=G 100power
nominal ; =G 20power

res and =NG 2.
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Fig. 14 shows the microgrid global and specific consumption curves
considering the two generators and the defined start and shutdown points.

In Fig. 14 it can be observed that the curve of specific consumption
changes depending on the range of demand met by the generators. In the
0–30 kW range, the generators do not work, but the power supplied by the
batteries will need to be recharged. The specific equivalent consumption in
the range of 0–30 kW can be estimated considering the cycle efficiency of
the battery system and the specific consumption of the generator at the time

Fig. 8. Quantity of hours replanned by each user in plans 2, taking the plans 1
as reference.

Fig. 9. Quantity of hours replanned by each user in plans 3, taking the plans 1
as reference.

Fig. 10. Histogram of the number of hours replanned per user in plans 2, taking
the plans 1 as reference.

Fig. 11. Histogram of the number of hours replanned per user in plans 3, taking
the plans 1 as reference.
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of the recharge. For the simulations, it was considered a cycle efficiency of
90% [31] and the minimum specific generator consumption (0.297 L/
kWh). So, the equivalent value of 0.328 L/kWh was defined for the 0 to
30 kW range. In the range of 30 kW to 80 kW, the specific consumption
curve of only one generator is considered. Above 80 kW the demand is
divided between the two generators. Consequently, in the 80 kW to 200 kW
range, the specific consumption value is given by the fuel consumption of
the two generators divided by the total demanded power.

3.3. Renewable resource curves

To reproduce situations of high penetration of renewables and to eval-
uate the behavior of the proposed DSM in these situations, the curves of
solar and wind resource were defined to promote a typical overgeneration
problem around midday hours [32]. The solar resource was defined

considering daily pattern of solar incidence. The wind resource was defined
in a complementary way to portray a situation of excess renewables during
some hours of the day and shortage during others. So, for the wind resource
was reproduced a day in which the wind only had enough speed to generate
energy from 8 a.m. to 13 p.m., 14 to 15 p.m. and 17 to 18 p.m.

Fig. 15 shows the renewable resources and aggregated demand
curves over one another for comparison. In Fig. 15, it can be observed
the problem of overgeneration from 10 a.m. to midday and the lack of
renewable resource in the other hours.

4. Definition of cases to test the DSM

Fundamentally, the proposed DSM always tries to adjust the ag-
gregated demand profile to make the generators operate as close as

Fig. 12. Hybrid microgrid topology defined for DSM system simulation.

Fig. 13. Global and specific consumption curves of a 100 kW generator, pow-
ered by diesel.

Fig. 14. Global and specific microgrid consumption curves with two 100 kW
generators.
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possible to its optimum points (minimum specific consumption point).
Consequently, improvements in the load factor of the generators and
reduction of hours of use of Generator 2 are also achieved.

To evaluate the ability of the proposed DSM and the improvements
that can be expected in real situations, the following cases were in-
vestigated:

• Case 1 - Demand management in the absence of renewable sources;
and

• Case 2 - Demand management in the presence of renewable sources.

Case 1 aims to assess the DSM load shifting capacity in the absence
of renewables. This case covers the situation of no renewable sources
installed or a situation when the renewable power plant needs to stay
disconnected. In this case the DSM is mainly expected to improve the
load factor and reduce the operating time of the generators.

Case 2 aims to evaluate the DSM load shifting capacity in scenarios
of excess renewables. In this case the DSM is expected to be able to
increase the participation of renewable sources by shifting loads to
hours of overgeneration. In this way, the DSM should reduce the pro-
blem of overgeneration and reduce fuel consumption, once the share of
renewable energy that initially was over the demand becomes usable.

To measure the improvements, each of the two cases was simulated
with and without DSM operation. To evaluate the deviation that might
be expected in the results using the proposed optimization technique,
the simulations were repeated 100 times for each case. The dispersion
of the results was evaluated, and the best solution found was detailed.
The convergence, the improvements trajectory, the Pareto frontier and
the final solution pattern were analyzed.

As a reference value for the evaluation of each case, it was calculated
the maximum fuel reduction that could be achieved in an ideal situation of
100% of load flexibility. This would be the savings if the demand could be
fully managed to make the generators operate at optimal load factor (75%).
In practice, and in the simulated cases, this reference value of savings will
not be reached given the flexibility constraints imposed by users.

To evaluate the performance of the proposed DSM, the following
indicators were chosen:

• Fuel consumption savings. Measured in liters of diesel and in per-
centage, compared to operation without DSM;

• Discomfort index or managed users. Indicates the number of users

that should opt for one of their alternative plans;
• Managed energy. It measures how much load was shifted from a

time to another;
• Renewable penetration rate. Indicates how much of the demand was

served by renewables;
• Generator load factor. Indicates the average percentage of the

nominal power of the generator that serves the demand; and
• Generators hours of use. Indicates how many hours the generators

have been in operation.

5. Results

Considering the definitions presented in the previous Sections, the
proposed DSM method and the optimization algorithm were evaluated
in the absence of renewable sources, Case 1, and in the presence of
renewable sources, Case 2.

In both cases, the proposed DSM method was able to improve the
aggregated demand profile. It was observed an improvement of the load
factor of the generators, reduction of the number of operation hours of
the Generator 2, improvement of renewable penetration and reduction
of the fuel consumption.

The VNS metaheuristics implemented with the parallel computing was
able to solve the problem satisfactorily in both cases. In all the simulations,
the algorithm demonstrated the ability to converge to an approximate op-
timal solution, exploring a minimum part of the solution space.

5.1. Simulation and analysis of Case 1

The simulation of Case 1 aims to evaluate the performance of the pro-
posed DSM method and the optimization algorithm in the absence of re-
newable sources. This case covers situations where renewable sources are
not installed or situations where renewable sources are inoperative or dis-
connected.

As a reference value to compare the results achieved by the proposed
DSM method, it was calculated the maximum savings if the demand could
be fully managed to make the generators operate at optimal load factor
(75%). In Case 1, considering 100% of load flexibility, the reference value of
saving is 1.8%. This value exposes the fact that the percentage of savings
possible to be achieved is highly dependent on two factors: the difference
between the original demand profile seen by the generators and their op-
timum load factor range; and the difference between the minimum and

Fig. 15. Solar and wind resource curves, superimposed over the aggregate demand curve.
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maximum specific fuel consumption rate of the generators. In the absence of
renewables, the lower these differences, the lower the potential for reducing
fuel consumption will be. However, fuel savings is only one of desired
improvements, and it is necessary to verify the gains in load factor and
hours of use of generators to really measure the DSM advantages.

In the 100 simulations performed with DSM in Case 1, consumption was
reduced by an average of 1% with an average of 40 users being managed.
Fig. 16 shows the dispersion of the results obtained in the 100 consecutive
simulations. The best solution achieved a 1.2% reduction in fuel con-
sumption with the participation of 47 users (simulation 52). The worst si-
mulation achieved 0.9% of fuel savings with the participation of 54 users
(simulation 54). Considering the theoretical limit of Case 1, 1.8%, and the
percentage reduction achieved with the DSM, 1.2%, the DSM was able to
reach 67% of the limit value, even with the limitations of load flexibility.

To evaluate the convergence of the optimization algorithm, Fig. 17
shows the convergence of the algorithm during the simulation 52. Al-
though the solution space was 3100, it was observed that the con-
vergence for the solution found occurred mostly before 20,000 cycles

and that the best solution was achieved in 64,032 cycles, equivalent to
7 s of execution of the algorithm (processor operating at 3.0 GHz).

Fig. 18 shows the trajectory of improvements and the Pareto frontier
obtained in the simulation n° 52. The lower consumption is reached by
the coordinated action of users and not only by the increasing of the
number of managed users. In simulation 52, the best solution was found
by VNS 3, modifying up to 100% of s' during the local searches.

Fig. 19 shows the optimal plans, or the coordinated action proposed
by the DSM system. In it, 53 users had Plan 1 selected, 28 the Plan 2 and
19 the Plan 3.

Fig. 20 shows the demand curve without and with DSM obtained in
simulation 52. The difference between the two demand curves can be vi-
sualized by the bar chart. The largest difference was approximately 25 kW,
at 17–18 h, equivalent to 31% of the average demand (81 kW, from 6 a.m.
to 6p.m.). The blue area indicates the flexibility range of the aggregate
demand verified during the simulation. The maximum flexibility observed
was 37 kW, at 11–12 h, equivalent to 46% of the average demand.

The reduction of the peak in the morning, at 8–9 h and 9–10 h al-
lowed Generator 2 to be switched off since the average hourly demand
was reduced to less than 80 kW (operating limit of Generator 1, defined

Fig. 16. Dispersion of the results obtained in 100 consecutive simulations of
Case 1.

Fig. 17. Solution convergence graph obtained in simulation 52, Case 1.

Fig. 18. Trajectory of improvements and the Pareto frontier obtained in the
simulation 52, Case 1.

Fig. 19. Coordinated action proposed by the DSM, simulation 52, Case 1.

T.M. de Christo, et al. Applied Energy 240 (2019) 453–472

465



in Section 3.2). The filling of the valley, at 11–12 h, improved the load
factor of Generator 1 in the hour, going from 51% to 73%.

In the afternoon, the demand reduction achieved between 12 and 13 h
allowed Generator 2 to be switched off and improved the load factor of
Generator 1 from 43% to 79%. Between 14 and 15 h, the increase of about
13 kW in the demand allowed increasing the load factor from 43% to about
50% in both generators. Finally, between 16 and 18 h, the DSM also allowed
the shutdown of Generator 2 and the rise of the Generator 1 load factor.

Fig. 21 presents the demands of Case 1, before and after de DSM,
plotted over a color gradient that represents the specific consumption of
the microgrid considering both generators. The color gradient follows
the cost zones and the specific consumption curves presented in Section
3.2. The green color is related to lower values of specific consumption,
and red represents higher values.

In Fig. 21 it is possible to observe that the DSM led the microgrid to
operate with lower specific consumption at all times. The five blue arrows

Fig. 20. Demand curve without and with DSM obtained in simulation 52, Case 1.

Fig. 21. Demands in Case 1, simulation 52, plotted over a color gradient that represents the specific consumption of the microgrid. Blue arrows indicate the times at
which Generator 2 can be turned off.

Table 2
DSM performance indicators in Case 1, simulation 52.

CASE 1 - DSM performance

Parameter Without DSM With DSM Difference

Fuel consumption [L] 293.3 289.7 −3.6
100.0% 98.8% −1.2%

Managed users [Users] 0 47 47
Managed energy [kWh] 0 60.36 kWh 60.36

0.0% 6.2% 6.2%
Renewable energy penetration [kWh] – – –
Generator 1 load factor [%] 50.4% 68.8% 18.4%
Generator 2 load factor [%] 45.9% 49.1% 3.2%
Generator 1 hours of use [h] 12 12 0

100.0% 100.0% 0.0%
Generator 2 hours of use [h] 8 3 −5

66.7% 25.0% −41.7%
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indicate the times that DSM allowed Generator 2 to be turned off.
Table 2 presents the DSM performance indicators in Case 1. In Case

1, two indicators deserved to be highlighted: load factor of Generator 1;
and number of hours that it was possible to disconnect Generator 2.

In case 1, although the reduction of fuel consumption was restricted to
1.8%, the indirect gains achieved were significant. The improvement of
the operating point of the generators was of 18.4% and the reduction of
the operation time of the Generator 2 was of 5 h. This indicates that the
DSM indirect gains may justify its application regardless of fuel savings.

5.2. Simulation and analysis of Case 2

The simulation of Case 2 aims to evaluate the performance of the
proposed DSM method and the optimization algorithm in the presence
of renewable sources. This case covers the problem of renewables
overgeneration and intermittence.

Similarly to Case 1, in order to establish a reference value that al-
lows evaluating the results achieved by the optimization algorithm and
the proposed DSM method, the theoretical maximum reduction in the
condition of total load flexibility was calculated. In Case 2, considering
100% flexibility, the theoretical limit of economy is 9.6%. This value is
mostly promoted by the share of renewable overgeneration that be-
comes absorbable when the demand is managed.

Fig. 22 shows the dispersion of the results obtained in 100 con-
secutive simulations. On average, consumption was reduced by 8.47%
with an average of 49 users managed. The best solution achieved 8.56%
of fuel savings with the participation of 51 users (simulation 69). The
worst simulation achieved 8.45% of fuel savings with the participation
of 55 users (simulation 87). From the theoretical fuel savings limit of
Case 2, 9.6%, and the reduction percentage reached, 8.6%, it is esti-
mated that the DSM was able to reach 89% of the limit value.

To evaluate the convergence of the optimization algorithm, Fig. 23
presents the convergence graph of the solutions obtained in the

Fig. 22. Dispersion of the results obtained in 100 consecutive simulations of
Case 2.

Fig. 23. Solution convergence graph obtained in simulation 69, Case 2.

Fig. 24. Trajectory of improvements and the Pareto frontier obtained in the
simulation 69, Case 2.

Fig. 25. Coordinated action proposed by the DSM, simulation 69, Case 2.
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simulation 69. It was observed that the convergence occurred mostly
before 5,000 cycles and that the best solution was achieved with 45,531
cycles, equivalent to 5 s of execution of the algorithm (processor op-
erating at 3.0 GHz).

Fig. 24 shows the trajectory of improvements and the Pareto frontier
obtained in the simulation 69. In Case 2, it is also possible to observe
that the lowest consumption is reached by the coordinated action of
users and not only by a greater amount of managed users. In simulation
69, the best solution was found by VNS 1, modifying up to 5% of s'
during the local searches.

Fig. 25 shows the coordinated action proposed by the DSM system.
In it, 49 users had Plan 1 selected, 31 the Plan 2 and 20 the Plan 3.

Fig. 26 shows the demand curve without and with DSM obtained in
the simulation 69. The difference between the two demand curves can

be visualized by the bar chart. The DSM was able to increase the pe-
netration of renewable sources by moving 41 kWh of the consumption
to hours where was the renewables overgeneration. The blue area in-
dicates the flexibility range of the aggregate demand verified during the
simulation 69. The maximum flexibility observed was 33.4 kW,
equivalent to 40% of the average demand.

Fig. 27 presents the demand curves seen by the generators before
and after the DSM, in Case 2. The curves are plotted over a color gra-
dient that represents the specific consumption of the microgrid con-
sidering both generators. The color gradient follows the cost zones and
the specific consumption curves presented in Section 3.2. The green
color is related to lower values of specific consumption, and red re-
presents higher values. The five blue arrows indicate the times that
DSM allowed the Generator 2 to be turned off. Between 10 h and 12 h

Fig. 26. Demand curve without and with DSM obtained in simulation 69, Case 2.

Fig. 27. Demands in Case 2, simulation 69, plotted over a color gradient that represents the specific consumption of the microgrid. Blue arrows indicate the times at
which Generator 2 can be turned off.
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both generators did not operate either with the DSM off or with the
DSM on.

The DSM led the microgrid to operate closer to regions of lower
specific consumption in most of the hours and improved the average
load factor of Generator 1 from 46.7% to 55.4%. In addition, the pro-
blem of renewables overgeneration was totally solved. During the
afternoon, from 15 h to 18 h, the reduction in demand allowed the
shutdown of Generator 2 for three consecutive hours.

In Case 2, the fuel economy was significant with the application of
DSM. 15.1 L of diesel were saved with the coordinated action of 51
users. This saving was achieved due to the improvement of the pene-
tration factor of renewable energies, which increased from 28.7% to
44.7%. This fact suggests that the adoption of the proposed DSM
method can contribute to the adjustment of the demand curve in cases
of hybrid microgrids subject to critical scenarios such as renewables
overgeneration at certain times of the day. Scenarios that become even
more frequent due to the increasing of solar energy sources in the grids
[32].

Table 3 presents the DSM performance indicators in Case 2. In Case
2, two indicators deserved to be highlighted: fuel consumption; and
penetration of renewable energies.

5.3. Sensitivity analysis

In a real-world application of the proposed DSM it is possible that
some of the users chooses not to follow the recommended plans. To
discover how much divergence can be expected if one or more users
choose to change its plan unexpectedly, it was performed a sensitivity
analysis of the fuel consumption and total hours of use of the generators
in relation to the percentage of undecided users. For the analysis, users
were randomly selected and had its recommended plans randomly
changed for another plan. The analysis was made in ranges stepped by
10%. Each range was simulated 1,825 times, to make an equivalence
with five years of observations. In the analysis, a range of 50%, for
example, represents the situation in which up to 50% of the users can
unexpectedly change their plan.

Fig. 28 presents the deviation expected in the fuel savings for the
increase of the percentage of undecided users in Cases 1 and 2. For the
fuel saving analysis, in booth cases, the higher the percentual of un-
decided users, the higher was the variation observed around the
average value. It happens because depending on the user its impact in
the aggregated demand is different, since the consumption profile of
each user is different from one another. In Case 1, the case without
renewables, a percentage of 30% of undecided users is sufficient to
carry to zero the average fuel savings. In Case 2, the case with re-
newables, even with up to 100% of undecided users an average of 5% of
fuel savings can be expected.

Fig. 29 presents the deviation expected in the time of use of Gen-
erator 2 for the increase of the percentage of undecided users in Cases 1
and 2. In Case 1, with 10% of undecided users the hours of use of
Generator 2 was significantly affected, passing from 3 to 6 h of opera-
tion on average. It reveals a correlation of Generator 2 total operation
time with the results of fuel consumption analysis of Case 1. On the
other hand, in Case 2, the operation time of the Generator 2 are only
affected after 70% of undecided users and it reveals that in Case 2 the
variation in the fuel savings are high related to the renewables over-
generation exploitation.

6. Discussion

The implementation of the proposed DSM does not depend on the
installation of monitoring and control devices and does not require
from the user knowledge about electrical equipment or about cost of
energy to define and register the activity plans. In real scenarios a
greater acceptance and participation of users is expected with the

Table 3
DSM performance indicators in Case 2, simulation 69.

CASE 2 - DSM performance

Parameter Without DSM With DSM Difference

Fuel consumption [L] 176.3 161.2 −15.1
100.0% 91.4% −8.6%

Managed users [Users] 0 51 51
Managed energy [kWh] 0 61.99 kWh 61.99

0.0% 6.4% 6.4%
Renewable energy penetration [kWh] 279.45 434.25 154.8

28.7% 44.7% 15.9%
Generator 1 load factor [%] 46.7% 55.4% 8.6%
Generator 2 load factor [%] 42.0% Turned off –
Generator 1 hours of use [h] 10 10 0

83.3% 83.3% 0.0%
Generator 2 hours of use [h] 3 0 −3

25.0% 0.0% −25.0%

Fig. 28. Deviation expected in the fuel savings for the increase of the percen-
tage of undecided users in Cases 1 and 2.

Fig. 29. Deviation expected in the time of use of Generator 2 in Cases 1 and 2.
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proposed approach compared to methods that require price monitoring
or installation of control devices. However, the proposed DSM can also
be applied together with load control devices. If combined these two
methods may allow even greater demand flexibility and convenience to
the user.

The cooperative management of activity plans proved to be a pro-
mising method for the working hours of the day. The method can be
extended to the 24 h of the day, however, during the night and dawn,
the potential for activity management tend to be low, once people are in
general resting. On the other hand, planning morning and afternoon
activities is a daily task naturally performed by people.

The proposed DSM method was able to improve the demand profile
both in the absence and in the presence of renewables, even acting in
less than half of the users. This indicates that the demand profile can be
improved with the coordinated action of sets of users, not requiring all
users to replan their activities. This is an advantage of the cooperative
versus individualized approach.

The gains in the absence of renewables happen mainly by the re-
duction of the hours of use of the generators and by the improvement of
the load factor. These two factors can significantly reduce annual and
long-term maintenance costs. In remote regions, depending on logistical
constraints the reduction of maintenance costs becomes even more
important.

The savings can be divided among all users, only among users who
had to opt for alternative plans or even for one of the users. In this way,
it is understood that different policies to encourage user participation
can be implemented through concession of discounts or prizes.

The storage of information about the users’ consumption is possible
but is not necessary for the DSM operation. Based on the consumption
information it is possible to identify profiles by types of user, by time,
day or month, by neighborhoods and by many other sets. The in-
formation may be used for research purposes, enhancement of DSM and
network resources, user orientation, and other similar actions. The se-
curity of the information and the authorization of data collection or use
are issues that need to be discussed both by the system administrator
and the community.

The major advantage of the proposed optimization compared to a
purely decision-making approach, in which the controller should decide
and choose one alternative among all possible alternatives, is the
guarantee of a high-quality solution whatever the demand profiles or
renewable resource availability. A purely decision-making algorithm
will test only three, four or a few possible solutions of the problem
versus 1,600,000 ( × × =4 4 100, 000 1, 600, 000) of the proposed IVNS.
A deep discussion and graphs comparing the two strategies are pre-
sented in the Appendix A.

7. Conclusions

Several techniques and methods for demand side energy manage-
ment have been investigated and tested in parallel with conservation
actions and rational use campaigns [4,12]. Among the main DSM
techniques investigated by the literature are: load shifting; peak clip-
ping; valley filling; load building; and flexible load [4]. Among these,

load shifting is considered one of the most effective.
Beyond the techniques, DSM systems also differ according to the

methods adopted. The methods can be differed by: type of interaction
with the users (individual or cooperative); approach to the optimization
problem (deterministic or stochastic); and time scale (day-ahead or real
time) [12].

The complexity of the optimization problem and consequently the
time required for optimization depend on the number of users, tech-
niques and methods of the DSM system. To deal with these issues, the
use of metaheuristics and parallel computing [15] have been shown
effective [16].

Related to DSM implementation in real scenarios, the mains diffi-
culties highlighted by the literature are to encourage human partici-
pation and to reduce the need of devices installation [9,22].

In this context, this work proposed a day-ahead cooperative DSM
method considering the comfort of the users, based on the management
of activity plans. The shifting of sets of loads through the shifting of
groups of activities proved to be feasible and promising. In the simu-
lations, the proposed DSM was able to improve the demand profile both
in the absence and in the presence of renewable sources, acting on
average in 40% of the users in the absence of renewables and 47% in
the presence of renewables and overgeneration.

Together with the parallel computing, the VNS metaheuristic
proved to be adequate for solving cooperative DSM problems. In all the
simulations, the algorithm demonstrated the ability to converge to
near-optimal solutions by visiting a minimal part of the solution space.

The most significant improvements achieved by the DSM in the
absence of renewables were the reduction of hours of use of the gen-
erators (minus 5 h) and the improvement of the load factor (18.4%).
Thus, in addition to fuel savings, the DSM can help to reduce main-
tenance costs.

The DSM system was also able to increase the penetration of re-
newables, moving part of the consumption for the hours of renewables
overgeneration. In the simulations, 8.6% of fuel savings was achieved
selecting alternative plans for 51 users.

Thus, it is understood that the proposed DSM method can contribute
to the adjustment of the profile of the aggregate demand of users served
by the same energy company or by isolated generation systems, with a
minimum degree of discomfort.

Moreover, the proposed DSM is not dependent on load-control de-
vices and does not require from the users frequent monitoring of energy
prices, improving the convenience to the user and reducing im-
plementation costs.
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Appendix A. Purely decision-making vs optimization

Fig. A1 shows possible solutions of a purely decision-making strategy and of the IVNS algorithm considering Case 1. The Fig. A2 presents a similar
plot for Case 2. The purely decision-making strategy considered was to select one of the three plans or a random solution if one of these had lower
fuel consumption when compared to main plans, the plans 1. For comparison with the optimized solution, it was also plotted in Figs. A1 and A2 the
Pareto frontier. Analysing the graphs it is possible to observe that moving all users to plans 2 or 3 can sometimes reduce the fuel consumption but the
discomfort caused to the users are maximum. High level of discomfort is undesirable. The selection of a random solution can produce less discomfort
to the users, but it could also give a worse result in terms of fuel consumption, since some aggregated demand profiles caused by random selection
can be worse than the main plans execution. On other the hand, the IVNS optimization grantees assertive decision-making finding solutions with low
consumption and low discomfort.
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To deal with time restrictions, the IVNS can have its stop criterion settled as a time limit. In this case the IVNS gives the best solution found in the
settled time. In terms of speed of execution, the time spent by the IVNS to run a one cycle analysis (16 solutions tested) is similar to the time spent to
execute the purely decision-making strategy (4 solutions tested). It is possible thanks to the use of parallel computation. As reference, the time spent
by the implemented IVNS for the execution of 100,000 cycles is about 10 s, an average of 0.1 ms/cycle, using a 3 GHz, quad-core processor.
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