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A B S T R A C T   

Geometry modeling is a common approach in pollutant dispersion studies. Block typology is a key element for 
representing geometries closer to real city environments. However, urban pollutant modeling studies and urban 
planning processes have different approaches regarding block typology and applied metrics. Therefore, the 
objective of this work is to compare urban block typologies and urban metrics used in literature studies with 
those found in real cities. The methodology combined a literature review with an empirical analysis of sample 
areas in selected cities. The results showed that more than 50 % of the studies applied idealized building arrays. 
Nonetheless, the idealized array tends to underestimate real densities, often misrepresenting urban planning 
indices. On the other hand, derived geometry reduces modeling complexity and increases the applicability of 
studies in urban planning. Based on our findings, we suggest an urban block parameterization derived from real 
urban areas (representative of the densest cities in Asia, Europe, and America). This study selects five block 
typologies derived from actual cities (single block, detached buildings, courtyard, inner courtyards, and row 
buildings) with estimated values of the floor area ratio (FAR) and surface coverage (SC) that, when combined, 
provide a more precise representation of density.   

1. Introduction 

In 2018, 55 % (approximately 4.2 billion) of the world population 
was living in cities, and this number is estimated to reach 68 % 
(approximately 6.7 billion) by 2050 (United Nations Department of 
Economic and Social Affairs, 2018). This growth can increase building 
density in urban areas (Tang and Wang, 2007). As building density in-
creases, the airflow pattern can trap pollutants, resulting in their accu-
mulation within the urban canopy. In general, compact urban areas 
frequently lead to higher pollutant concentrations, for both high (An 
et al., 2019; Yuan et al., 2019) and medium building densities (Bucco-
lieri et al., 2015; Hang et al., 2015). In this context, urban planning can 
regulate city configurations and contribute to establishing a healthy 
urban environment. However, a gap remains between urban air quality 
studies and their application in urban planning (Badach et al., 2020; 
Cárdenas Rodríguez et al., 2016). It is possible to identify two key 

aspects restricting the use of air quality studies in urban planning: (i) the 
application of urban geometries that are often overly idealized or overly 
specific and (ii) air pollution dispersion studies adopt different metrics 
than those used in the urban planning process. 

Air quality studies often model urban geometries using computa-
tional fluid dynamics (CFD). This technique offers advantageous fea-
tures, such as its affordability, accuracy, reasonable response time, and 
comprehensive visualization (An et al., 2019; Blocken and Gualtieri, 
2012; Buccolieri et al., 2015; Nebenzal et al., 2020). The quality of the 
results depends not only on using the appropriate equations to represent 
the phenomenon and employing suitable numerical strategies but also 
on the correct description of the urban geometry (Carpentieri and 
Robins, 2015a; Guo et al., 2017a; Peng et al., 2019; You et al., 2017). 
Therefore, the urban geometry must be carefully taken into consider-
ation for the model to provide a realistic representation of the 
environment. 
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Urban geometry is the result of a city’s configuration, which com-
bines its urban layout (urban blocks and streets; see Fig. 1) with its urban 
block typology (the arrangement of buildings on the urban block). In the 
literature, geometries are classified as real or generic. Real geometry 
represents an existing situation in a specific region. Simulating existing 
regions can indicate the most impactful characteristics of urban geom-
etry (Shen et al., 2017; Yang, Shi et al., 2020). Also, simulating these 
regions provides guidelines for implementing the urban planning of a 
specific city (Kurppa et al., 2018; Yuan et al., 2019, 2014a). In this sense, 
simulating a real geometry assists with planning a specific region but 
hinders the ability to extrapolate the results for a general purpose. On 
the other hand, generic geometry reduces the complexity of CFD simu-
lations, allowing for a broader application of the results (An et al., 2019; 
Carpentieri and Robins, 2015b; Yang, Shi, Zheng et al., 2019; Yang, Shi, 
Shi et al., 2019). Because generic geometry is a parameterized repre-
sentation of urban configurations, it simplifies the complexity of real 
geometries. 

Generic geometry can be divided into three types: idealized, 
simplified, and derived (Fig. 2). The idealized building array often uses 
the same dimensions for buildings’ widths, lengths, and/or heights and 
the space between buildings (Chen et al., 2017; Hang et al., 2015; Lin 
et al., 2014). However, the idealized building array does not take the 
concept of the urban block into account; consequently, the dimensions 
of this component vary greatly from the urban reality. To use geometries 
that resemble real city environments, Merlier et al. (2019) and Ricci 
et al. (2017) simplified the geometry of an existing city block. Simplified 
geometry considers the urban block as a bluff body, i.e., it does not 
consider the buildings’ arrangement (the block typology). Nonetheless, 
Guo et al. (2017a,2017b) and Ricci et al. (2017) found that block ty-
pology affects urban airflow, and simplified block typology often gen-
erates an overly idealized or unrealistic version of the city. More 
recently, some studies presented derived geometry as a new category, 
which simplifies the real configuration by using the predominant block 
typology of a specific region (Carpentieri and Robins, 2015a; Peng et al., 
2019). Therefore, derived geometry represents a generic approach that 
is closer to what is seen in real cities. 

Furthermore, it is significant that modeling studies use different 
metrics than those employed in the urban planning process. The ma-
jority of the literature applies the concept of packing density using the 
plan area density (λP) and the frontal area density (λF) to describe the 
building density (Hang et al., 2015; Ramponi et al., 2015; Shirzadi et al., 
2018). However, these metrics differ from the usual urban planning 
indices. Some of the most common urban planning indices around the 
world include the floor area ratio (FAR), which correlates with the built 
density area, the surface coverage (SC), (surface coverage), which cor-
relates with urban porosity, and building height (H). Only a few recent 
air quality studies focusing on urban planning apply indices such as FAR 
and SC (Cheshmehzangi and Butters, 2016; Peng et al., 2019). Although 
both modeling metrics and urban planning indices relate to surface 

coverage and built proportion, there is a key difference between them: 
the modeling metrics (λp and λf) consider the streets in the total area, 
while the urban indices (FAR and SC) exclude the streets in the total area 
(Fig. 3). Moreover, the metric λf correlates the built area with building 
height, while FAR represents the built volume. 

Given the differences between modeling studies and urban planning, 
the main objectives of this work are (i) to discuss the treatment of urban 
block typologies and metrics in literature studies and those found in real 
cities; and (ii) to propose an urban block parameterization more similar 
to actual urban environments. To achieve these aims, a literature review 
of pollutant dispersion studies and an empirical analysis of real city 
morphologies were conducted. The findings support an urban block 
parameterization derived from real urban areas that brings modeling 
studies closer to the urban planning process. 

2. Urban blocks and pollutant dispersion 

The urban block has been a key element in the urban planning pro-
cess for several decades. Nonetheless, pollutant dispersion modeling 
studies identify the urban block or “city block” as a novel generic 
configuration (Moonen et al., 2012). This configuration is simple 
enough to be generic yet complex enough to be relevant for urban 
planning (Moonen et al., 2012). Three main parameters describe urban 
block geometry: (i) shape, (ii) block typology, and (iii) the relation of 
built and unbuilt space. In this section, these parameters are classified, 
and their impact on pollutant dispersion is summarized. 

Urban block shapes vary significantly from city to city or even from 
neighborhood to neighborhood. The block shape results from the city 
layout, which is determined by urban planning guidelines and urban 
characteristics, such as topography and the historical development of 
the region. Commonly, urban blocks are square or rectangular, but 
several regions present complex shapes with various angles and sinu-
osity. Each shape impacts pollutant dispersion differently. For example, 
given the same area and built volume, square blocks may promote a 
higher wind velocity at the pedestrian height than rectangular ones (Gan 
& Chen, 2016). 

Furthermore, the buildings’ arrangement contributes to a variety of 
block typologies, each with different spacing between buildings. The 
buildings’ arrangement may improve ventilation between the buildings 
or produce regions of airflow stagnation. For instance, configurations 
such as closed blocks (single block) and row buildings are unfavorable to 
natural ventilation (Guo et al., 2017a,2017b). Moreover, in the court-
yard typology, the inner patio area remains clean, indicating that 
traffic-related pollutants are not easily transported into these inner areas 
(Gronemeier and Sühring, 2019; Kurppa et al., 2018). Consequently, the 
specific block typology can affect the pollutant concentration pattern 
within the block and in the neighboring streets. Several studies 
emphasize that block typology is one of the most important factors for 
pollutant dispersion in the urban environment (An et al., 2019; Yang, 

Fig. 1. (2 columns) Schematic illustration of real urban geometry: (a) real geometry and (b) the corresponding urban layout.  
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Shi, Zheng et al., 2019; Yang, Shi, Shi et al., 2019). Simulations that 
oversimplify or do not consider block typology can lead to a misun-
derstanding regarding the impact of the urban geometry. 

Block typology is configured by different unbuilt and built relations, 
represented by parameters such as density, surface coverage, built vol-
ume, and canyon aspect ratio. The urban indices (e.g., FAR and SC) are 
strongly correlated to density and describe the relationship between 
unbuilt and built spaces. Although FAR and SC can vary significantly 
within the same city, several studies parameterize these indices using 
the mean values of a sample region. For example, in different European 
cities, the FAR index values range from 1.5 to 5.2, while the SC values 
vary from 50 % to 75 % (EIFER and LSE Cities, 2011). In Japanese cities, 
the FAR varies from 1.2 to 2.6, and the SC ranges from 17 % to 50 % 
(Cheshmehzangi and Butters, 2016) in regions with buildings up to three 
floors. Values of FAR above 4 indicate high-density cities, values be-
tween 2 and 4 indicate medium densities, and values less than 2 indicate 
low densities (Yang, Shi, Zheng et al., 2019; Yang, Shi, Shi et al., 2019). 

SC can be described in terms of urban porosity or permeability, an 
important factor for increasing air quality (An et al., 2019; Yuan et al., 
2014a). For example, inserting spaces between buildings yields a greater 
porosity and results in a higher wind permeability (Yuan et al., 2014a). 
Arrangements with at least a 20 % permeability maintain a lower 
pollutant concentration at pedestrian height (An et al., 2019). However, 
when fixing FAR values (5) and varying the SC (11%–77%) for the same 
plot area, the local ventilation performance is not linearly related to SC 
but strongly depends on the buildings’ arrangement (Peng et al., 2019). 
To summarize, FAR is an index that reflects the density of the con-
struction; conversely, the urban configuration may present a variety of 
changes with the same floor area ratio (Yang, Shi, Zheng et al., 2019; 
Yang, Shi, Shi et al., 2019). Therefore, to understand the impact of urban 
morphology on pollutant dispersion, it is important to study the rela-
tionship between urban indices and block typology. Consequently, the 
urban block geometry is crucial for obtaining accurate results. Thus, 
performing air quality studies in support of urban planning is crucial for 
improving the block typology used in numerical models. 

3. Methods 

The research strategy followed two steps: (i) identifying the most 
common typologies and (ii) analyzing the metrics. This integrated 
approach combined a literature review with an empirical analysis of 
sample areas in selected cities. 

The literature review covered studies published in refereed journals 
on the ScienceDirect platform, written in English, and employing 3D 
computational domains and/or wind tunnel geometries, using the key-
words “pollutant dispersion,” “urban,” “CFD,” and “wind tunnel.” 
Within these parameters, 221 studies published between January 1996 
and January 2020 were identified and investigated (see Appendix A for 
the complete description). Around 80 % of these studies occurred within 
the last decade (Fig. 4), indicating an increase in research in this field 
and the topic’s novelty. 

The empirical analysis was conducted on the densest cities in Europe, 
America, and Asia. These cities were Tokyo, Hong Kong, and Shanghai 
in Asia; Barcelona, Paris, and London in Europe; and New York and Sao 
Paulo in America (Demographia, 2018). The sample area of each city 
(Fig. 5) was selected based on (i) plain topography, (ii) a territorial size 
of approximately a 500 m radius, (iii) proximity to the central area, and 
(iv) a regular urban layout. These criteria were defined sequentially to 
reduce urban variables, remain compatible in size with microscale 
model studies (Hang and Li, 2010), represent the densest city region, 
and allow further parameterization. The samples were identified with 
Google Earth’s support, and each city was examined via satellite 
imagery. 

3.1. Identification of the most common typologies 

The reviewed papers were categorized according to the following 
criteria: the type of urban geometry (generic or real), geometric 
configuration, and urban block typology. Three categories of generic 
geometries were identified: idealized, simplified, and derived. Addi-
tionally, the studies were divided into seven categories based on the 
geometric configuration: square blocks, rectangular blocks, mixed 
blocks, intersection, street canyon, street canyons, and other shapes 
(Table 1). 

Fig. 2. (2 columns) Schematic illustration of urban geometry categories: (a) idealized geometry, (b) simplified geometry, and (c) derived geometry.  

Fig. 3. (2 columns) Schematic illustration of urban metrics: (a) planar area density (λp) and frontal area density (λf), and (b) urban indices: floor area ratio (FAR) and 
surface coverage (SC). 
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Fig. 4. (1.5 columns) Number of papers examining pollutant dispersion per year.  

Fig. 5. (2 columns) Satellite view and figure-ground of each selected city’s sample: (a) Tokyo, (b) Hong Kong, (c) Shanghai, (d) Barcelona, (e) Paris, (f) London, (g) 
New York, (f) Sao Paulo. Source: Google Earth, 2019. 
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The most commons block typologies were identified using Merlier 
et al. (2018) categorization, based on different cities (Dresden, 
Singapore, Barcelona, Copenhagen, Quito, and Marrakesh). Their pro-
posal suggests five types of urban blocks: single building (cube array), 
row buildings, U-shaped blocks, enclosed blocks (single courtyard), and 
continuous patio arrays (inner courtyards). Additionally, our study’s 
empirical analysis revealed three new categories to add to these preex-
isting classifications: detached buildings, mixed, and other. The empir-
ical analysis further identified three block shapes: square, rectangular, 
and other. Therefore, eight block typologies were defined in total: 
U-shape, mixed, other, inner courtyards (several courtyards), courtyard 
(single courtyard), row buildings, detached buildings, and single block, 
as illustrated in Table 2. These categories were quantitatively analyzed 
to provide an overview of the customary field practice. 

3.2. Metric analysis 

The metrics analyzed included plan area density (λp), frontal area 
density (λf), canyon aspect ratio (H/W), building height (H), FAR, and 
SC. Additionally, the empirical analysis identified the dimensions of 
urban layout parameters: street width and urban block dimensions, 
including width (W), length (L), and their ratio (L/W). 

For the metric analysis, of the 221 total papers, 65 were selected 

according to the following criteria: (i) they used generic geometries, (ii) 
they had a defined/identified block dimension, and (iii) they contained 
the necessary values for analyzing the metrics. These papers represent a 
total of 110 urban arrangements classified into the following generic 
geometric categories: 97 idealized, 5 simplified, and 8 derived. To 
compare the values of usual modeling metrics with the urban indices, an 
H of 18 m was assumed for the papers that did not use a real height 
value. This value corresponds to a building with 6 floors, in accordance 
with the reference height used in similar papers. Moreover, the metric 
calculations in real cities adopted approximated values for common el-
ements, representing the values most often used. Subsequently, the most 
common typologies and the most common block shapes were identified. 
To propose a sequential geometric parameterization based on real cities, 
the mean metric values and urban indices of European cities were used. 
The European cities included in this study presented a typological 
pattern and uniform values for the analyzed parameters. Nonetheless, 
the same block typologies can represent Asian or American cities by 
adjusting the values for H, FAR, and SC (see section 4.2). 

Table 1 
Classification and description of categories based on the geometric configuration.  

GEOMETRIC CONFIGURATION 

Classification Illustration Description Classification Illustration Description 

Square blocks Configurations comprised of several 
regular quadrilateral blocks of equal length 
and width 

Street 
canyon 

Street with buildings on both sides, usually of 
infinite length in generic geometries 

Rectangular 
blocks 

Configurations comprised of several 
regular quadrilateral blocks of equal length 
on two adjacent sides 

Street 
canyons 

Configurations comprised of several street 
canyons 

Mixed blocks Configurations formed by at least two 
different block shapes, and where a 
predominant shape is not identified 

Other 
shape 
blocks 

Configurations formed by blocks of complex 
shapes, including triangles, circles, or shapes 
other than square and rectangular 

Intersection The junction of two road segments     

Table 2 
(2 columns) Classification and description of urban block typologies.  

BLOCK TYPOLOGY 

Classification Illustration Description Classification Illustration Description 

U-shape An urban block with one side open, forming a “U” Courtyard A non-occupied area in the block 
forms a central patio 

Mixed Formed by at least two block typologies and where a 
predominant typology is not identified 

Row buildings Attached buildings appearing as a 
row 

Other Formed by a tower or hybrid typology Detached 
buildings 

Buildings separated by spaces 

Inner 
courtyards 

Non-occupied areas in the block form more than one 
patio 

Single block A dense shape forming a bluff 
body  
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4. Results 

4.1. Analysis of the most common typologies 

Fig. 6 provides a flow chart of the literature review. Some papers 
analyzed more than one urban geometry, making the total number of 
urban geometries larger than the number of papers. A large number of 
studies rely on generic geometry (idealized, simplified, or derived). 
However, the relevant number of studies using real geometry is not 
surprising, especially given the increase in available computational 
power in years. 

Fig. 7 presents an overview of the most prominent geometric prac-
tices, showing that about 50 % of the studies with generic geometries 
applied the idealized building array. Meanwhile, 36 % of the papers 
relied on real geometries, which are commonly used to understand the 
specifics of a given region. Only a few studies employed simplified and 
derived geometries. As discussed previously, the use of block typology 
(derived geometries) in CFD studies is relatively recent in comparison 
with idealized or real geometries. 

Furthermore, Fig. 8 exhibits the quantitative distribution of geo-
metric configuration categories and block typologies found in the 
literature review. Several studies focused on street canyons (single and 
multiple). However, while studies applying idealized geometry tended 
to focus on street canyons and square-shaped blocks, studies of real cities 
primarily centered on rectangular-shaped blocks, mixed blocks, or other 
configurations. By definition, idealized and simplified geometries are 
based on a single block typology. On the other hand, in studies using 
derived geometries, the most common typologies are courtyards (single 
and multiple) and row buildings. Moreover, real geometries frequently 
involve a mixed typology. 

Table 3 presents the predominant block shapes and typologies in the 
empirical analysis. The rectangular block shape predominates in most 

cities. However, in Barcelona, despite the occurrence of some rectan-
gular block shapes, the squared configuration is more common. 
Furthermore, in Asian cities, the complex block shape, with various 
angles and sinuosity, occurs frequently. In terms of block typology, 
European cities present clearer typological patterns involving court-
yards and inner courtyards. Nevertheless, a compact block typology (i. 
e., a single block), with nonexistent spaces between buildings, occurs in 
denser areas, such as London. In Asian and American cities, attached 
buildings forming row buildings or a single block (a bluff-body shape) 
are predominant. Despite their prevalence, the detached building ty-
pology, with short spaces between buildings, is also observed in Asian 
and American cities. 

Fig. 6. (1.5 columns) – Flow chart of the literature review.  

Fig. 7. (1.5 columns) Distribution (%) of the geometry categories found in the 
literature review. 
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4.2. Metric analysis of the selected geometries 

Table 4 summarizes the metrics used in the 65 selected papers (the 
full table is available in Appendix B). Overall, the parameters calculated 
for idealized geometries reveal a large standard deviation, indicating a 
significant variation between the studies. Likewise, studies employing 
derived geometry exhibit a large standard deviation since these studies 
focus on regions with diverse densities. In contrast, studies applying 
idealized and simplified geometries always value the SC at 100 % 
because these geometries do not consider the buildings’ arrangement, 
treating the block as a bluff-body. 

Table 5 summarizes the metrics from studies that examined real 
cities. In general, European cities have uniform values of urban indices. 
Conversely, in Asian and American cities, the building heights vary on 
the same block, showing deviations up to 39 m. The presence of high- 
rise buildings accentuates this deviation and can increase the FAR up 
to 16, configuring a high-density region. Despite these differences, an SC 
value of approximately 80 % was identified in all selected cities. Urban 
layout characteristics are also more uniform in European cities than in 

Asian and American cities. For instance, the block shape proportion (L/ 
W) ranges from 1 to 3.3 in the selected cities. Likewise, the street width 
differs from 12 m (local streets) to 21 m (main avenues). 

The differences between the parameters found in the literature and in 
real cities are evident. The values of H, λp, and FAR in generic geometries 
are significantly smaller than in real cities, especially in Asia and 
America. The SC values are an exception. In idealized and simplified 
geometries, these index values are larger than in real ones because, as 
previously discussed, these types of geometries do not consider the 
buildings’ arrangements. However, derived geometries present SC 
values similar to real cities. 

4.3. Discussion and urban block parameterization proposal 

Comparatively, the four types of geometries (idealized, simplified, 
derived, and real) show evident differences in typologies and metrics 
values. In urban-array typologies, the generic categories focus especially 
in the single block cube. This typology is also found in real cities; 
however, the predominant urban block shape is the rectangle. Moreover, 

Fig. 8. (2 columns) Distribution of articles found in the literature review concerning (a) geometry configurations and (b) urban block typologies.  

Table 3 
(2 columns) Block typologies of selected cities.  

Region Block shape Block typology 

Continent City Square Rectangular Other Detached buildings Row “U” Courtyard Inner courtyards Single 
block 

ASIA 
Tokyo  × × ×

Hong Kong  × × × ×

Shanghai  × × × ×

EUROPE 
Barcelona × ×

Paris  × × ×

London  × × × ×

AMERICA New York  × × × ×

Sao Paulo  × × ×

Table 4 
(2 columns) Summary urban arrangements metrics statistics in selected papers.  

Geometry Category Number of papers Statistics  

Modeling metrics Urban indices Urban layout 

Height λp λf H/W FAR SC Street 
width 

IDEALIZED 53 
Mean 22 0.31 0.25 1.16 2.5 100 25 
Median 20 0.25 0.25 1 2.5 100 20 
St. deviation 11.8 0.18 0.18 0.83 3.3 0 16.5 

SIMPLIFIED 5 
Mean 18.6 0.8 0.21 1.55 6.2 100 12 
Median 16.2 0.58 0.19 1.35 4.24 100 12 
St. deviation 1.2 0.11 0.01 0.1 0.98 0 0 

DERIVED 7 
Mean 30 0.47 0.32 1.6 3.4 67 30 
Median 17.35 0.37 0.18 0.96 2.2 57 17.35 
St. deviation 21.1 0.1 0.2 1.0 1.9 14.0 21.1  
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the absence of setbacks among buildings in real cities forms a contiguous 
geometry, the row. These row buildings are the most studied typology in 
idealized street canyon configurations. Furthermore, in European cities, 
courtyards (central and inner) are the most common block typology. 
Finally, detached buildings (cube shaped) are more prevalent in Amer-
ican and Asian cities and are more common in low-density residential 
areas. Nonetheless, this typology proportion resembles the idealized 
array, which is highly common in literature studies. 

The differences between the geometric categories are even more 
evident in the metrics values. Concerning the urban layout character-
istics, the median street width in idealized geometries was 20 m, in 

contrast with 12 m in real urban areas. The urban block area varied from 
2.600 m2 in idealized geometries to 13.395 m2 in real cities. Also, the 
urban block proportion (L/W) changed from 0.9 in idealized geometries 
to 1.5 in real cities. As discussed in the previous section, the urban layout 
in idealized geometries compresses the block area while enhancing the 
streets’ widths, providing a larger ratio between built and unbuilt areas 
than in real environments. Consequently, this arrangement produces a 
less dense configuration compared to real urban areas. 

Finally, the difference in built density between the generic and real 
categories is considerable. For example, the mean FAR value was 2.4 in 
idealized geometries and 7 in simplified geometries, while real cities 

Table 5 
(2 columns) Metrics of urban arrangements in selected sample cities.  

Region 

Height Modeling metrics Urban indices Urban layout 

Mean Median St. D λp λf H/W FAR SC Street 
Urban block 

L × W Area L/W 

ASIA 
Tokyo 55 60 29.5 0.6 0.56 6 16 80 10 130 × 70 9100 1.9 
Hong Kong 55 60 33.2 0.6 1.13 5 16 80 12 130 × 43 5590 3.3 
Shanghai 60 60 39 0.6 0.58 3.8 16 80 16 272 × 142 38,624 1.9 

EUROPE 
Barcelona 18.9 18 2 0.6 0.16 1.5 5 80 12 116 × 116 13,456 1 
Paris 18.6 18 2.75 0.6 0.18 1.5 5 80 12 150 × 92 13,800 1.6 
London 17.4 18 3.4 0.6 0.18 1.5 5 80 12 131 × 85 11,135 2.4 

AMERICA New York 46 48 28.3 0.6 0.54 3 13 80 16 220 × 73 16,060 3 
Sao Paulo 48.7 48 24.8 0.5 0.4 3.7 11 65 13 170 × 100 17,000 1.7  

Fig. 9. (2 columns) Block typologies derivative proposal: (a) single block; (b) detached buildings; (c) courtyard; (d) inner courtyards; (e) row.  
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exhibited a mean value of 5. This study concludes that idealized ge-
ometries tend to underestimate these parameters, while simplified ge-
ometries tend to overestimate them. Additionally, it is important to 
emphasize that the built density can be misinterpreted if only the 
modeling metrics are applied. For instance, λf correlates the built area 
with the building height, while FAR expresses the built volume. More-
over, λp considers the streets in the total area instead of focusing on the 
relation of urban blocks as the SC does. Including urban indices is key for 
enhancing the built-density description. This inclusion can increase the 
applicability of a study’s results for urban planning. 

We thus propose five conventional urban block typologies to repre-
sent real geometries: single block, detached buildings (cube-shaped), 
courtyard, inner courtyards, and row buildings. Fig. 9 presents a sche-
matic representation of the urban block typologies, using dimensions 
based on European cities. Although this representation is based on 
average values for European cities, it can be extrapolated to other re-
gions and densities by adjusting the values of H, FAR, and SC. 

The suggested urban layout contains urban blocks of 95m × 141m 
and has a street width of 12 m. The urban index values for the block 
parameterization proposal based on the selected cities include a FAR 
value of 5, an SC equivalent to 80 %, and a building height of 18 m. It is 
noteworthy that urban indices are employed in urban blocks to limit the 
built area. Therefore, the dimensions of the buildings inside the block 
were calculated to produce a FAR value of 5, an SC equivalent to 80 %, 
and a building height equal to 18 m. This process is similar to the 
building restrictions that architects and engineers incorporate into 
building designs. Consequently, to maintain the urban block di-
mensions, some adjustments in the urban index values are required, as 
shown in Table 6. Given that the numbers chosen express an average, 
these adjustments are appropriate. 

Although the proposed typologies serve as a generic representation 
of a real urban structure, real cities are highly heterogeneous, especially 
in regions where growth is organic rather than planned. Nevertheless, 
when the goal is planning new areas or improve existing regions, a 
common strategy is to define the urban indices for zones. This strategy 
leads to diverse block typologies. In this context, the use of the proposed 
typologies creates a wide range of applicability in urban air quality 
studies, which can contribute to the urban planning guidelines in several 
regions. Moreover, by adjusting the urban index values, the typologies 
proposed above can represent denser regions. It is also possible to pro-
pose several configurations using more than one block typology to study 
more complex environments. 

5. Conclusions 

To achieve a healthier urban environment, the results of air quality 
modeling studies should be more applicable to urban planning. To 
achieve this aim, it is necessary to properly represent urban geometry. In 
modeling studies, urban geometry can be generic (idealized, simplified, 
or derived) or real. More than 60 % of the reviewed literature studies 
relied on generic geometries. This type of geometry reduces the 
complexity of CFD simulations and allows for a broader application of 
the results. However, more than 50 % of the studies used an idealized 
array, which does not consider the block typology and frequently leads 
to unrealistic urban geometries. 

Idealized geometries tend to underestimate city density, while 
simplified arrays tend to overestimate it. In contrast, the derived arrays, 
which consider the predominant block typology of a real region, are 
more accurate in representing the city. In this sense, the concept of block 
typology should be more frequently used in numerical simulations of 
urban pollutant dispersion. In short, the derived block typology provides 
the simplicity of a generic configuration combined with the complexity 
of actual regional characteristics. 

Comparatively, the geometric categories (idealized, simplified, 
derived, and real) exhibit differences in typologies and metric values. 
Moreover, the built density can be misinterpreted if only the modeling 
metrics (λp and λf) are applied without the use of urban indices (FAR and 
SC). For example, λp considers the streets in the total area, while the SC 
focuses on the relation of urban blocks. Additionally, λf correlates the 
built area with the building height, while FAR expresses the built vol-
ume. Therefore, we propose using FAR in association with SC to obtain a 
more precise representation of the built density. 

Regarding the urban layout, almost 50 % of the reviewed studies 
used the square shape, while in real cities, the rectangular shape pre-
dominates. Furthermore, the street width in real cities is narrower than 
in generic geometries. As a result, we propose an urban layout with 
rectangular urban blocks of 13.000 m2 (95 × 141 m) and streets of 12 m. 
Five block typologies were selected for the block typology parameteri-
zation: single block, detached buildings, courtyard, inner courtyards, 
and row-buildings. Finally, the urban-index values were set at a FAR 
value of 5, an SC of 80 %, and an H of 18 m, which represents cities of 
medium to high density. The proposed block parametrization offers the 
advantages of a generic geometry with the representativeness of real 
urban environments to pollutant dispersion modeling studies. Conse-
quently, the results of these studies will be able to more accurately assist 
the urban planning guidelines of several regions worldwide. 
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Appendix A. Overview of the pollutant dispersion studies  

# Authors (year) UG BS Block typology # Authors (year) UG BS Block typology 

1 (Sini et al., 1996) I SC single block 27 (Yassin et al., 2008) I R courtyard 
2 (MacDonald et al., 1997) I S single block 28 (Kang et al., 2008) I SC single block 
3 (Leitl and Meroney, 1997) I SC’S single block 29 (Gromke et al., 2008) I SC single block 
4 (Scaperdas and Colvile, 1999) S R single block 30 (Solazzo et al., 2008) I SC single block 

(continued on next page) 

Table 6 
(2 columns) Definition of values for the urban block metrics.  

BLOCK TYPOLOGY λp λf FAR SC (%) H (m) 

SINGLE BLOCK 0.63 0.18 5 83 18 
DETACHED BUILDINGS 0.63 0.17 5 83 18 
CENTRAL COURTYARD 0.64 0.19 5 84 18 
INNERS COURTYARD 0.64 0.19 5 84 18 
LONGITUDINAL ROW 0.64 0.19 5 84 18  
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(continued ) 

# Authors (year) UG BS Block typology # Authors (year) UG BS Block typology 

5 (Craig et al., 2001) I S single block 31 (Murena et al., 2008) R R inners courtyards 
6 (Mavroidis and Griffiths, 2001) I S single block 32 (Hanjalić and Kenjereš, 

2008) 
R O mixed 

7 (Chan et al., 2002) I SC single block 33 (Cai et al., 2008) I SC single block 
8 (Borrego et al., 2003) R R row 34 (Yang and Shao, 2008) I S single block 
9 (Chang and Meroney, 2003) I R single block 35 (Yassin, 2011) I SC single block 
10 (Kim and Baik, 2004) I S single block 36 (Huang et al., 2009) I SC’S single block 
11 (Baker et al., 2004) I SC single block 37 (Hang et al., 2009) I R; S; 

O 
row; single block; 
other 

12 (Pospisil et al., 2004) R O courtyard; mixed 38 (Kato and Huang, 2009) R R; O row; single block 
13 (Yassin et al., 2005) R R; O detached buildings; 

row; mixed 
39 (Murena et al., 2009) R R; O inners courtyards 

14 (Xie et al., 2005) I SC’S single block 40 (Li et al., 2009) I SC single block 
15 (Chu et al., 2005) S R single block 41 (Kondo and Tomizuka, 2009) R R; O row; single block; 

mixed 
16 (Xiaomin et al., 2006) I SC single block 42 (Xie and Castro, 2009) R R single block 
17 (Mumovic et al., 2006) R R mixed 43 (McNabola et al., 2009) I SC single block 
18 (Dixon et al., 2006) R O mixed 44 (Buccolieri et al., 2009) I SC single block 
19 (Borrego et al., 2006) R O mixed 45 (XIE et al., 2009) I SC single block 
20 (Neofytou et al., 2006) R O mixed 46 (Fernando et al., 2010) I R row 
21 (Milliez and Carissimo, 2007) I R row 47 (Parra et al., 2010) S S single block 
22 (Di Sabatino et al., 2007) I S Single block 48 (Belalcazar et al., 2010) R O mixed 
23 (Baik et al., 2007) I SC single block 49 (Tchepel et al., 2010) R O mixed 
24 (Wang and McNamara, 2007) I I row 50 (Garbero et al., 2010) I S single block 
25 (Huang et al., 2008) R O Single block 51 (Boppana et al., 2010) I S single block 
26 (Santiago and Martín, 2008) R R inners courtyards 52 (Gousseau et al., 2011) R R single block 
53 (Branford et al., 2011) I S single block 80 (Tominaga and 

Stathopoulos, 2012) 
I R single block 

54 (Salim et al., 2011) I SC single block 81 (Moonen et al., 2012) I S courtyard 
55 (Soulhac et al., 2011) R R inners courtyards 82 (Franke et al., 2012) I S; R single block 
56 (Zhang et al., 2011) I SC single block 

83 (Leuzzi et al., 2012) I R row 
57 (Solazzo et al., 2011) R;S SC single block 

58 (Gu et al., 2011) I SC single block 84 
(Hang, Li, Buccolieri et al., 
2012) I SC’S single block 

59 (Schatzmann and Leitl, 2011) R M mixed; courtyard 85 (Soulhac et al., 2013) I S single block 
60 (Salim et al., 2011) I SC row 86 (Hajra et al., 2013) I R single block 
61 (Liu et al., 2011) R M mixed 87 (Hang et al., 2013) I S single block 
62 (Tominaga and Stathopoulos, 2011) I SC single block 88 (Moonen et al., 2013) I SC single block 
63 (Luo and Li, 2011) I S single block 89 (Michioka et al., 2013) R O detached buildings 
64 (Cheng and Liu, 2011) I SC’S single block 90 (Bright et al., 2013) I SC single block 

65 (Buccolieri et al., 2011) 
I SC single block 91 (Sanchez et al., 2013) R R mixed 
R S courtyard 92 (Amorim et al., 2013) R O mixed 

66 (Bady et al., 2011) D R detached buildings 
93 (Santiago et al., 2013) 

S S single block 
67 (Hang and Li, 2011) I S single block (tower) S R; O single block 
68 (Hang et al., 2011) I S single block 94 (Gallagher et al., 2013) R O mixed 
69 (Gromke, 2011) I SC single block 95 (Vos et al., 2013) I S + R courtyard 
70 (Nikolova et al., 2011) R O courtyard I R detached buildings 
71 (Carpentieri et al., 2012) R R Single block 96 (Garcia et al., 2013) R O mixed 
72 (Hang, Li, Sandberg et al., 2012) I S single block 97 (Wang et al., 2013) R O row 

73 (Kikumoto and Ooka, 2012a) I SC’S single block 98 (Yuan et al., 2014b) D R 
row; typology 
variations 

74 (Kwak and Baik, 2012) I SC single block 99 (Lin et al., 2014) I S single block 
75 (Hertwig et al., 2012) D O courtyard 100 (Tiwary and Kumar, 2014) D O courtyard 
76 (Kikumoto and Ooka, 2012b) I SC’S single block 101 (Ng and Chau, 2014) I SC’S row 
77 (Kim et al., 2012) I; S SC single block 102 (Shen et al., 2015) I S single block 
78 (Liu et al., 2012) R O mixed 103 (Kumar et al., 2015) I R single block 

79 (Baik et al., 2012) I SC single block 104 
(Carpentieri and Robins, 
2015a) R R single block 

105 (Kwak et al., 2015) R R mixed 131 (Gromke et al., 2016) I SC single block 
106 (Park et al., 2015) I S single block 132 (Muilwijk et al., 2016) I SC single block 
107 (Toparlar et al., 2015) R O courtyard R O courtyard 
108 (Efthimiou et al., 2015) D O courtyard 133 (Jeanjean et al., 2016) R O mixed 
109 (Tsegas et al., 2015) R M; O inners courtyards 134 (Soulhac et al., 2016) I S single block 
110 (Stabile et al., 2015) I SC single block 

135 (Blocken et al., 2016) 
I S single block 

111 (Jeanjean et al., 2015) 
validation - 
I SC single block R O mixed 

R O courtyard 136 (Yang et al., 2016) I SC row 
112 (Hang et al., 2015) I S single block 137 (Paas and Schneider, 2016) R O mixed 
113 (Tan et al., 2015a) I SC single block 138 (Pesic et al., 2016) I SC single block 
114 (Vernay et al., 2015) R R other 139 (HUANG et al., 2016) I SC single block 
115 (Lo and Ngan, 2015) I SC’S row 140 (Jin et al., 2016) S SC single block 
116 (Tan et al., 2015b) I SC’S single block 141 (Thaker and Gokhale, 2016) S O single block 

117 (Yang et al., 2015) I SC single block 142 
(Fallah-Shorshani et al., 
2017a) R R mixed 

118 (Gromke and Blocken, 2015a) I S single block 143 (Mons et al., 2017) R R 
courtyard; single 
block 

(continued on next page) 

F. Trindade da Silva et al.                                                                                                                                                                                                                    



Sustainable Cities and Society 70 (2021) 102882

11

(continued ) 

# Authors (year) UG BS Block typology # Authors (year) UG BS Block typology 

119 (Vranckx et al., 2015) I SC single block 144 (Shen et al., 2017) R/ 
S 

SC: R; 
S 

single block; detached 
buildings 

120 (Habilomatis and Chaloulakou, 2015) I SC single block 145 (Ai and Mak, 2017) I SC’S single block 
121 (Gromke and Blocken, 2015b) I S single block 146 (King, Khan et al., 2017) I S single block 
122 (Zhong et al., 2015) I SC single block 147 (King, Gough et al., 2017) I S single block 
123 (Scungio et al., 2015) I SC single block 148 (Chen et al., 2017) I S single block 
124 (Buccolieri et al., 2015) I S single block 149 (Juan et al., 2017) R S; R "U" 
125 (Ghermandi et al., 2015) R O detached buildings 150 (Fallah-Shorshani et al., 

2017b) 
R R mixed 

126 (Ramponi et al., 2015) I R single block 151 (Ben Salem et al., 2017) I S single block 
127 (Carpentieri and Robins, 2015b) I R single block 152 (Du et al., 2017) R O mixed 
128 (Murena and Mele, 2016) I SC single block 153 (Fu et al., 2017) R SC single block 
129 (Yu and Thé, 2016) I R Single block 154 (Kang et al., 2017) R R row; single block 
130 (Gallagher, 2016) R O mixed      
155 (Moradpour et al., 2017) I S single block 182 (Liu, Pan et al., 2018) I S single block 
156 (Santiago et al., 2017) S R; O single block 183 (Gao et al., 2018) R O row; detached 

buildings 
157 (Xue and Li, 2017) I SC single block 184 (Wise et al., 2018) R O mixed 
158 (Hang et al., 2017) I SC’S single block 

185 (Hang et al., 2018) 
I S single block (tower) 

159 (He et al., 2017) I SC’S single block I R single block 
160 (Fan et al., 2017) I SC’S row 186 (Scungio et al., 2018) I SC single block 

161 (Nosek et al., 2017) I SC single block 187 (Llaguno-Munitxa and 
Bou-Zeid, 2018) 

I SC’S single block 

162 (Hong et al., 2017) R O row; "U" 188 (Buccolieri et al., 2018) R R inners courtyards; 
single block 

163 (Chen et al., 2017) I S single block 189 (Dhunny et al., 2018) R O mixed 
164 (Fuka et al., 2018) I R single block 190 (Du and Ming Mak, 2018) R O mixed 
165 (García-Sánchez et al., 2017) R M mixed 191 (Carpentieri et al., 2018) I R single block 
166 (Toja-Silva et al., 2017) R O; R courtyard; row 192 (Dai et al., 2018) I R Single block 

167 (García-Sánchez et al., 2017) R O courtyard; single 
block 

193 (Wang et al., 2018) I R row 

168 (Liu et al., 2017) 
I S single block 194 (Toja-Silva et al., 2018) I; R S; R Single block; 

courtyard; row 

R R 
row; mixed; detached 
buildings 195 (An et al., 2019) I; R S; R Single block 

169 (Li and Xue, 2018) R R; O single block 196 (Mei et al., 2019) I SC’S row 
170 (He et al., 2018) D R row 197 (Tan et al., 2019) I SC single block 
171 (Liu, Heidarinejad et al., 2018) R R row 198 (Su et al., 2019) I SC single block 
172 (Efthimiou et al., 2018) D O courtyard 199 (Lin et al., 2019) I S single block 
173 (Nakajima et al., 2018) I S single block 200 (Xiao et al., 2019) R M single block 
174 (Hang et al., 2018) I S single block 201 (Dai et al., 2019) I R single block 
175 (Weerasuriya et al., 2018) R R mixed 202 (Lee and Mak, 2019) R O mixed 
176 (Tolias et al., 2018) D O courtyard 203 (Gallagher and Lago, 2019) I SC single block 
177 (Mohammad et al., 2018) I S single block 204 (Yuan et al., 2019) D R row 
178 (Rafael et al., 2018) R O courtyard; mixed 205 (Rivas et al., 2019) S O single block 
179 (Li and Xue, 2018) R O; M mixed 206 (Santiago et al., 2019) R O courtyard; single 

block; mixed 180 (Sha et al., 2018) I S single block 
181 (Shi et al., 2018) R R; O mixed 207 (Zhang et al., 2019) I SC single block 

208 
(Yang, Shi, Zheng et al., 2019; Yang, 
Shi, Shi et al., 2019) I S single block 215 (Mo and Liu, 2019) I S single block 

209 (Marucci and Carpentieri, 2019) I SC single block 216 (Bahlali et al., 2019) I R row 
210 (Thouron et al., 2019) S O single block 217 (Li et al., 2019) I SC single block 

211 (Yang, Shi, Shi, Marvin and Xia, 2019) I S single block 218 (Bahlali et al., 2019) I R single block 
R O mixed 219 (Lenz et al., 2019) R S;R courtyard 

212 (Merlier et al., 2019) S O single block 220 (Fellini et al., 2019) R S; M courtyard; inners 
courtyard 

213 (Huang et al., 2019) I SC single block 221 (Yang, Chen et al., 2020) R O mixed 
214 (Longo et al., 2019) I R single block       

Legend: UG – urban geometry; I –Idealized; S – Simplified; D – Derived; R – Real; BS – Block Shape; S – Square; R – Rectangular; SC – Street Canyon; 
SC’S – Street Canyons; O – Other; M – Mixed. 
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